DOI QR코드

DOI QR Code

A Study on Actual Conditions and Ways to Improve Primary School Science Teaching

초등 과학수업 실태 점검 및 개선 방안 연구

  • Received : 2011.06.21
  • Accepted : 2011.08.12
  • Published : 2011.08.31

Abstract

The purpose of this research is to investigate the actual conditions of primary school science teaching and ways to improve it. In elementary science teaching, teachers themselves tend to have science misconceptions and insufficient science content knowledge. Experienced teachers argued that it could be hard for elementary teachers with lack of science content knowledge to provide their students with meaningful learning experiences of science. Based on the general characteristics of elementary teaching and the awareness of elementary teachers' insufficient science content knowledge, we explored the real situation of the elementary science classroom. We conducted open-ended interviews with teachers and focus group discussions on a regular basis to analyze and compare classes of five primary school teachers. Data analysis focused on why elementary students avoid science classes in upper grades of elementary school and why elementary science classes always need hands-on activities. We also discussed ways to turn hands-on investigation into minds-on investigation by connecting it to important ideas in science. Based on the results, we suggested ways to improve inservice teacher training such as designing supplementary in-service training focused on content knowledge for primary school teachers, setting up professional exchange or collaboration between primary and secondary teachers, and introducing subject-specialized teachers for the fifth and sixth graders of primary school. In particular, considering elementary teachers' insufficient science content knowledge, employing science subject matter specialists in the elementary school could be a useful strategy.

본 연구에서는 초등학교 과학수업의 실태를 탐구하고 그 개선 방안을 탐색하였다. 초등학교 과학수업의 경우 교사들 스스로 과학개념이나 내용에서 오개념을 갖고 있는 경우가 많이 발견된다. 이렇듯 초등교사들이 과학에 부담을 느끼고 과학내용지식에 부족함을 느끼는 상태에서 수업을 하게 되면, 좋은 수업이나 학생들에게 유의미한 수업이 되기는 어렵다고 경력교사들은 지적하였다. 이러한 초등학교 수업의 전반적인 특징과 초등교사들의 과학내용지식에 대한 문제의식에 대한 이해를 토대로 본 연구에서는 초등학교 과학수업의 실태를 탐구하였다. 수업동영상 분석을 위한 컨설팅 협의회, 초등교사와의 면담 등을 활용하여 학생들이 초등학교 저학년에서는 과학을 가장 선호하다가 고학년이 되면서 과학을 가장 기피하는 이유, 초등 과학수업에서 활동이나 실험이 반드시 필요한 이유, 초등 과학수업에서 hands-on 활동에 머물지 않고 minds-on 활동을 만드는 방안 등을 논의하였다. 또한 초등 과학수업을 개선하기 위한 방안으로 초등교사의 과학내용전문성 재교육의 필요성, 초등과 중등 간의 교류의 필요성, 초임교사 지원을 위한 공식적인 입문 프로그램의 필요성, 초등학교 5, 6학년의 경우 교과전담 체제 도입의 필요성 등을 논의하였다. 연구결과를 토대로 초등학교 과학수업 내실화를 위해 요청되는 초등학교 현직교사 연수 방안을 제언하였다.

Keywords

References

  1. 민희정, 박철용, 백성혜, 2010, 교수 실제를 통한 초임 과학교사의 PCK 분석. 한국과학교육학회지, 30, 437-451.
  2. 박성혜, 2003, 교사들의 과학 교과교육학지식과 예측변인. 한국과학교육학회지, 23, 671-683.
  3. 이화진, 홍선주, 권점례, 상경아, 2007, 초등 초임교사의 수업 전문성 발달 자료 개발 및 지원 방안 연구. 한국교육과정평가원 연구보고 RRI 2007-4-1, 267 p.
  4. 임청환, 2003, 초등교사의 과학 교과교육학 지식의 발달이 과학 교수 실제와 교수 효능감에 미치는 영향. 한국지구과학회지, 24, 258-272.
  5. 조희형, 고영자, 2008, 과학교사 교수내용지식(PCK)의 재구성과 적용 방법. 한국과학교육학회지, 28, 618-632.
  6. 최승현, 강대현, 곽영순, 장경숙, 2008, 교과별 내용교수지식(PCK) 연구(II)-중등 초임교사 수업컨설팅을 중심으로. 한국교육과정평가원 연구보고 RRI 2008-3, 402 p.
  7. 한국교육과정평가원, 2009, 수업전문성 제고를 위한 멘토링 체제 연구-국어, 사회, 과학 교과를 중심으로. 한국교육과정평가원 연구보고 RRI 2009-7, 394 p.
  8. 홍미영, 2008, 국내외 교실 학습 연구(II)-우리나라, 핀란드, 호주의 중학교 과학 수업을 중심으로. 한국교육과정평가원 연구보고 RRI 2008-1-1, 177 p.
  9. Coke, P.K., 2005, Practicing what we preach: An argument for cooperative learning opportunities for elementary and secondary educators. Education, Winter 2005, 126, 392-398.
  10. Duschl, R. and Osborne, J., 2002, Supporting and promoting argumentation discourse. Studies in Science Education, 38, 39-72. https://doi.org/10.1080/03057260208560187
  11. Eggen, P.D. and Kauchak, D.P., 2009, Educational Psychology: Windows on Classrooms (8th ed.). Prentice-Hall, NJ, USA, 515 p.
  12. Hashweh, M.Z., 1987, Effects of subject-matter knowledge in the teaching of biology and physics. Teaching and Teacher Education, 3, 109-120. https://doi.org/10.1016/0742-051X(87)90012-6
  13. Hill, H.C., Rowan, B., and Ball, D.L., 2005, Effects of teachers' mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42, 371-406. https://doi.org/10.3102/00028312042002371
  14. Lehrer, R., Carpenter, S., Schauble, L., and Putz, A., 2000, Designing classrooms that support inquiry. In Minstrell, J. and Zee, E.V. (eds.), Inquiring into inquiry learning and teaching in science. American Association for the Advancement of Science, Washington, D.C., USA, 80-99.
  15. Lemke, J.L., 1990, Talking Science: Language, Learning and Values. Ablex Publishing Corporation, NJ, USA, 276 p.
  16. Magnusson, S., Krajcik, J., and Borko, H., 1999, Nature, sources, and development of PCK. In Gess-Newsome, J. and Lederman, N.G. (eds.), Examining pedagogical content knowledge. Kluwer, Dordrecht, Netherlands, 95-132.
  17. Martin, M.O., Mullis, I.V.S., Gonzalez, E.J., and Chrostowski, S.J., 2004, Findings From IEA's Trends in International Mathematics and Science Study at the Fourth and Eighth Grades. TIMSS and PIRLS International Study Center, Boston College, MA, USA, 467 p.
  18. Metz, K.E., 2004, Children's understanding of scientific inquiry: Their conceptualization of uncertainty in investigations of their own design. Cognition and Instruction, 22, 19-290.
  19. Mortimer E. and Scott, P., 2003, Meaning making in secondary science classrooms. Open university press, Berkshire, England, 160 p.
  20. NRC (National Research Council), 2007, Taking Science to School: Learning and Teaching: Science in Grades K-8. National Academy Press, Washington, DC., USA, 348 p.
  21. Sanders, L.R., Borko, H., and Lockard, J.D., 1993, Secondary science teachers knowledge base when teaching science courses in and out of their area of certification. Journal of Research in Science Teaching, 30, 723-736. https://doi.org/10.1002/tea.3660300710
  22. Shulman, L.S., 1986, Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4-14.
  23. Shulman, L.S., 1987, Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1-21.
  24. Smith, C.L., Maclin, D., Houghton, C., and Hennessey, M.G., 2000, Sixth-grade students' epistemologies of science: The impact of school science experiences on epistemological development. Cognition and Instruction, 18, 285-316. https://doi.org/10.1207/S1532690XCI1803_1
  25. Thagard, P., 1992, Conceptual revolutions. Princeton, Princeton University Press, NJ, USA, 310 p.
  26. van Esa, E.A. and Sherinb, M.G., 2008, Mathematics teachers' "learning to notice" in the context of a video club. Teaching and Teacher Education, 24, 244-276. https://doi.org/10.1016/j.tate.2006.11.005
  27. Wenger, E., 1998, Communities of practice: Learning, meaning, and identity. Cambridge University Press, NY, USA, 336 p.

Cited by

  1. Exploration of Discursive-Epistemic Mechanisms in High School Earth Science Lessons vol.36, pp.4, 2015, https://doi.org/10.5467/JKESS.2015.36.4.390