DOI QR코드

DOI QR Code

실시간 객체 검출을 위한 개선된 Haar-like Feature 정규화 방법

An Improved Normalization Method for Haar-like Features for Real-time Object Detection

  • 박기영 (서강대학교 전자공학과 CAD & ES 연구실) ;
  • 황선영 (서강대학교 전자공학과 CAD & ES 연구실)
  • 투고 : 2011.03.12
  • 심사 : 2011.08.01
  • 발행 : 2011.08.31

초록

본 논문에서는 객체 검출에 사용되는 Haar-like feature의 정규화 방법에 대해 다룬다. 기존의 Haar-like feature의 분산 정규화는 후보 윈도우 픽셀들에 대한 표준편차 계산에 사용되는 별도의 적분 영상 생성을 위해 많은 연산을 필요로 했으며 밝기 변화가 작은 영역에서 오검출이 증가하는 문제를 가지고 있으나, 제안하는 정규화 방법은 별도의 적분 영상을 사용하지 않아 처리 속도가 빠르며 제안하는 방법을 사용하여 학습시킨 분류기는 밝기 변화에 대해 강건한 성능을 보인다. 실험 결과 제안한 방법을 사용했을 때 객체 검출기의 처리 속도는 26% 향상 되었으며, 제안한 방법을 사용하여 학습시킨 분류기들은 5% 이상 향상된 검출률을 보였으며, 밝기 변화가 심한 경우는 45% 향상된 검출률을 보였다.

This paper describes a normalization method of Haar-like features used for object detection. Previous method which performs variance normalization on Haar-like features requires a lot of calculations, since it uses an additional integral image for calculating the standard deviation of intensities of pixels in a candidate window and increases possibility of false detection in the area where variance of brightness is small. The proposed normalization method can be performed much faster than the previous method by not using additional integral image and classifiers which are trained with the proposed normalization method show robust performance in various lighting conditions. Experimental result shows that the object detector which uses the proposed method is 26% faster than the one which uses the previous method. Detection rate is also improved by 5% without increasing false alarm rate and 45% for the samples whose brightness varies significantly.

키워드

참고문헌

  1. C. Papageorgiou, M. Oren, and T. Poggio, "A General Framework for Object Detection," in Proc. Sixth Int. Conf. Computer Vision, Bombay, India, pp.555-562, Jan. 1998.
  2. M. Betke and N. Makris, "Fast Object Recognition in Noisy Images using Simulated Annealing," in Proc. Fifth Int. Conf. Computer Vision, Boston, MA, USA, pp.523-530, Jun. 1995.
  3. A. Yuille, P. Hallinan, and D. Cohen, "Feature Extraction from Faces using Deformable Templates," Int. Journal of Computer Vision, Vol.8, No.2, pp.99-111, Aug. 1992. https://doi.org/10.1007/BF00127169
  4. H. Rowley, S. Baluja, and T. Kanade, Human Face Detection in Visual Scenes, Carnegie Mellon Univ. Computer Science Technical Report CMU-CS-95-158R, 1995.
  5. M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio, "Pedestrian Detection Using Wavelet Templates," in IEEE Conf. Computer Vision and Pattern Recognition, San Juan, Puerto Rico, pp.193-199, Jun. 1997.
  6. E. Osuna, R. Freund, and F. Girosi, Support Vector Machines: Training and Applications, A. I. Memo 1602, MIT, 1997.
  7. K. Sung and T. Poggio, "Example-based Learning for View-based Human Face Detection," IEEE Transactions Pattern Analysis and Machine Intelligence, Vol.20, No.1, Jan. 1998.
  8. C. Papageorgiou and T. Poggio, "A Trainable System for Object Detection," Int. Journal of Computer Vision, Vol.38, No.1, pp.15-33, Jun. 2000. https://doi.org/10.1023/A:1008162616689
  9. P. Viola and M. Jones, "Rapid Object Detection using a Boosted Cascade of Simple Features," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Kauai, HI, USA, pp.511-518, Dec. 2001.
  10. N. Dalal and B. Triggs, "Histograms of Oriented Gradients for Human Detection," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Vol.1, San Diego, CA, USA, pp.886-893, Jun. 2005.
  11. D. Gavrila and S. Munder, "Multi-Cue Pedestrian Detection and Tracking from a Moving Vehicle," Int. Journal of Computer Vision, Vol.73, No.1, pp.41-59, Jun. 2007. https://doi.org/10.1007/s11263-006-9038-7
  12. S. Bota and S. Nedesvchi, "Multi-feature Walking Pedestrians Detection for Driving Assistance Systems," IET Intelligent Transport Systems, Vol.2, Issue. 2, pp.92-104, Jun. 2008. https://doi.org/10.1049/iet-its:20070039
  13. M. Enzweiler and D. Gavrila, "Monocular Pedestrian Detection: Survey and Experiments," IEEE Transactions Pattern Analysis and Machine Intelligence, Vol.31, No.12, pp.2179-2195, Dec. 2009. https://doi.org/10.1109/TPAMI.2008.260
  14. S. Alvarez, M. Sotelo, I. Parra, D. Llorca, and M. Gavilan, "Vehicle and Pedestrian Detection in eSafety Applications," in Proc. World Congress Engineering and Computer Science, Vol.II, San Francisco, USA, pp.662-667, Oct. 2009.
  15. W. Zheng and L. Liang, "Fast Car Detection Using Image Strip Features," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Miami, Florida, USA, pp.2703 -2710, Jun. 2009.
  16. P. Viola and M. Jones, "Robust Real-time Face Detection," Int. Journal of Computer Vision, Vol.57, No.2, pp.137-154, May 2004. https://doi.org/10.1023/B:VISI.0000013087.49260.fb
  17. T. Ephraim, T. Himmelman, and K. Siddiqi, "Real-Time Viola-Jones Face Detection in a Web Browser," in Proc. Canadian Conf. Computer and Robot Vision, Kelowna, British Columbia, Canada, pp.321-328, May 2009.
  18. J. Ren, N. Kehtarnavaz, and L. Estevez, "Real-Time Optimization of Viola-Jones Face Detection for Mobile Platforms," in Proc. IEEE Dallas Circuits and Systems Workshop SoC: Design, Applications, Integration, and Software, Dallas, TX. USA, pp.1-4, Oct. 2008.
  19. B. Kisacanin, "Integral Image Optimizations for Embedded Vision Applications," in Proc. IEEE Southwest Symp. Image Analysis and Interpretation, Santa Fe, New Mexico, USA, pp.181-184, Mar. 2008.
  20. Y. Freund and R. Schapire, "A Short Introduction to Boosting," Journal of Japanese Society for Artificial Intelligence, pp.771-780, Sep. 1990.
  21. Y. Freund and R. Schapire, "Experiments with a New Boosting Algorithm," in Proc. Int. Conf. Machine Learning, Bari, Italy, pp.148-156, Jul. 1996.
  22. R. Schapire, Y. Freund, P. Bartlett, and W. Lee, "Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods," in Proc. Int. Conf. Machine Learning, Nashville, TN, USA, pp.322-330, Jul. 1997.
  23. R. Lienhart and J. Maydt, "An Extended Set of Haar-like Features for Rapid Object Detection," in Proc. Int. Conf. Image Processing, Rochester, New York, USA, pp.900- 903, Sep. 2002.
  24. S. Li, L. Zhu, Z. Zhang, A. Blake, H. Zhang, and H. Shum, "Statistical Learning of Multi-View Face Detection," in Proc. European Conf. Computer Vision, Vol.4, Copenhagen, Denmark, pp.67-81, May 2006.
  25. T. Mita, T. Kaneko, and O. Hori, "Joint Haar-like Features for Face Detection," in Proc. Int. Conf. Computer Vision, Beijing, China, pp.1619-1626, Oct. 2005.
  26. F. Crow, "Summed-Area Tables for Texture Mapping," in Proc. Conf. Computer Graphics and Interactive Techniques, Vol.18, Minneapolis, MN, USA, pp.207-212, Jul. 1984.
  27. B. Benson, J. Cho, D. Goshorn, and R. Kastner, "Field Programmable Gate Array (FPGA) Based Fish Detection Using Haar Classifiers," in Proc. American Academy of Underwater Sciences Symp., Atlanta, GA, USA, pp.160-167, Mar. 2009.
  28. S. Ehsan, A. Clark, and K. McDonald-Maier, "Novel Hardware Algorithms for Row-Parallel Integral Calculation," Digital Image Computing: Techniques and Applications, Melbourne, Australia, pp. 61-65, Dec. 2009.
  29. CBCL Face Database #1, MIT Center For Biological and Computation Learning, http://www.ai.mit.edu/projects/cbcl
  30. Caltech Faces 1999(Front), Computational Vision at Caltech, http://www.vision.caltech.edu/htmlfiles/archive.html
  31. B. Weyrauch, J. Huang, B. Heisele, and V. Blanz, "Component-based Face Recognition with 3D Morphable Models," in Proc. Conf. Computer Vision and Pattern Recognition Workshop, Washington D.C., USA, pp.85, Jun. 2004.
  32. OpenCV, Open source computer vision library, http://opencv.willowgarage.com/wiki/
  33. J. Friedman, T. Hastie, and R. Tibshirani, "Additive Logistic Regression: a Statistical View of Boosting," Annals of Statistics 28, pp.337-407, Aug. 1998.

피인용 문헌

  1. High Efficient Viola-Jones Detection Framework for Real-Time Object Detection vol.18, pp.1, 2014, https://doi.org/10.7471/ikeee.2014.18.1.001