초록
센서 태그의 데이터는 태그 정보와 센싱 정보를 동시에 가지며 미들웨어 또는 상위 레벨에서의 필터링 및 가공이 필요하다는 특정을 가지고 있다. 기존의 필터링 알고리즘에서는 태그데이터와 센서 데이터를 각각 필터링하는 알고리즘이 주로 제안되었다. 그러나 센서 태그의 사용 요구는 점차 증가하고 있으며, 사용요구에 적합한 필터링을 위해서는 센싱 데이터와 RFID 데이터를 통합 처리할 수 있는 새로운 필터링 알고리즘이 필요하다. 본 논문에서 제안하는 필터링 알고리즘에서는 각 태그의 시간 축에 대한 필터링만을 고려하는 것이 아니라 공간적으로 근접한 태그의 데이터도 함께 고려하여 필터링하여 오류 및 이벤트 검출의 정확성을 향상시키고 데이터의 대표값 저장으로 데이터 저장에 필요한 비용을 감소시킬 수 있다.
The conventional sensor tag data filtering algorithm uses time window based data filtering for each tag data. However, this approach shows many performance problems such as low error and event detection rate and larger storage size requirement. In this paper, we propose a collaborative sensor tag data filtering algorithm to improve sensor data processing performance. simulation study shows that the proposed sensor tag filtering algorithm outperforms the conventional filtering algorithm in terms of the processing time, the size of required data storage memory and accuracy of error and event detection rate.