DOI QR코드

DOI QR Code

Etch selectivities of mask materials for anisotropic dry etching of gas sensing ZnO and SnO2 films

가스 센서용 ZnO, SnO2 박막의 이방성 식각을 위한 mask 재료의 식각 선택도 조사

  • Park, Jong-Cheon (Department of Nano Fusion Technology, Pusan National University) ;
  • Cho, Hyun (Department of Nanomechatronics Engineering, Pusan National University)
  • 박종천 (부산대학교 나노융합기술학과) ;
  • 조현 (부산대학교 나노메카트로닉스공학과)
  • Received : 2011.07.15
  • Accepted : 2011.08.05
  • Published : 2011.08.31

Abstract

Etch selectivities of mask materials to ZnO and $SnO_2$ films were studied in $BCl_3$/Ar and $CF_4$/Ar inductively coupled plasmas for fabrication of nanostructure-based gas sensing layer with high aspect ratios. In $25BCl_3$/10Ar ICP discharges, selectivities of 5.1~6.1 were obtained for ZnO over Ni while no practical selectivity was obtained for ZnO over Al. High selectivities of 7 ~ 17 for ZnO over Ni were produced in $25CF_4$/10Ar mixtures. $SnO_2$ showed much higher etch rates than Ni and a maximum selectivity of 67 was observed for $SnO_2$ over Ni.

고이온밀도 플라즈마 식각에 의한 고종횡비, 고이방성을 갖는 ZnO, $SnO_2$ 나노 구조 가스 감응층 형성을 위하여 mask 재료들과의 식각 선택도를 조사하였다. $25BCl_3$/10Ar ICP 플라즈마에서는 ZnO와 Ni 간 5.1~6.1 범위의 식각 선택도가 확보된 반면에 Al의 경우 효율적인 식각 선택도를 확보할 수 없었다. $25CF_4$/10Ar ICP 플라즈마에서는 ZnO와 Ni 간에 7~17 범위의 높은 식각 선택도를 얻을 수 있었다. $SnO_2$$SnF_x$ 식각 생성물의 높은 휘발성에 기인하여 Ni에 비해 매우 높은 식각 속도를 나타내었고, 최고치 약 67의 매우 높은 식각 선택도를 확보하였다.

Keywords

References

  1. N. Yamazoe and N. Miura, Chemical Sensor Technology Vol. 4 (edited by S. Yamauchi and N. Yamazoe, Kodansa-Elseveir, Tokyo, 1992) pp. 19-42.
  2. Z. Fan, D. Wang, P.-C. Chang, W.-Y. Tseng and J.G. Lu, "ZnO nanowire field-effect transistors and oxygen sensing properties", Appl. Phys. Lett. 85 (2005) 5923.
  3. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li and C.L. Lin, "Fabrication and ethnol sensing characteristics of ZnO nanowire gas sensors", Appl. Phys. Lett. 84 (2004) 3654. https://doi.org/10.1063/1.1738932
  4. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, "Catalytic growth of zinc oxide nanowires by vapor transpport", Adv. Mater. 13 (2001) 113. https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
  5. P. Parthangal, R. Cavicchi and M.R. Zachariah, "A universal approach to electrically connecting nanowire arrays using nanoparticles-application to a novel gas sensor architecture", Nanotechnology 17 (2006) 3786. https://doi.org/10.1088/0957-4484/17/15/029
  6. Y. Cao, W. Liu, J. Sun, Y. Han, J. Zhang, S. Liu, H. Sun and J. Guo, "A technique for controlling the alignment of silver nanowires with an electric field", Nanotechnology 17 (2006) 2378. https://doi.org/10.1088/0957-4484/17/9/050
  7. H.C. Kim, J.H. Kim, H.J. Yang, J.S. Suh, T.Y. Kim, B.W. Han, S.W. Kim, D.S. Kim, P.V. Pikhitsa and M.S. Choi, "Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols", Nature Nanotechnology 1 (2006) 117. https://doi.org/10.1038/nnano.2006.94
  8. A. Tsujiko, T. Kisumi, Y. Magari, K. Murakoshi and Y. Nakato, "Selective formation of nanoholes with (100)- face walls by photoetching of n-$TiO_{2}$(rutile) electrode, accompanied by increases in water-oxidation photocurrent", J. Phys. Chem. B 104 (2000) 4873. https://doi.org/10.1021/jp993285e
  9. S.A. Akbar, C. Carney, S.H. Yoon and K. Sandhage, "Ceramic nanostructures by gas phase reaction", 209th The Electrochemical Society Meeting, Abstract #794 (2006).
  10. Y.I. Bang, K.D. Song, B.S. Joo, J.S. Huh, S.D. Choi and D.D. Lee, "Thin film micro carbon dioxide sensor using MEMS process", Sensors and Actuators B 102 (2004) 20. https://doi.org/10.1016/j.snb.2003.11.039