DOI QR코드

DOI QR Code

Physiological Characteristics and Production of Vitamin K2 by Lactobacillus fermentum LC272 Isolated from Raw Milk

  • Received : 2011.05.11
  • Accepted : 2011.07.12
  • Published : 2011.08.31

Abstract

In order to develop a new starter culture for fermented milk, Lactobacillus fermentum LC272 was isolated from raw milk and its physiological characteristics were investigated. The vitamin $K_2$ concentration of L. fermentum LC272 was $184.94{\mu}g/L$ in Rogosa medium and $63.93{\mu}g/L$ in the reconstituted skim milk. The optimum growth temperature for L. fermentum LC272 was determined to be $40^{\circ}C$ and it took 24 h for the pH to reach 5.2 under this condition. L. fermentum LC272 was more sensitive to rifampicin relative of the other 15 different antibiotics tested, and showed most resistance to streptomycin. L. fermentum LC272 showed higher activities to leucine arylamidase and acid phosphatase. It was comparatively tolerant to bile juice and acid and displayed high resistance against Salmonella Typhimurium and Staphylococcus aureus with rates of 82.9 and 86.3% respectively. These results demonstrated that L. fermentum LC272 could be an excellent starter culture for fermented milk with high levels of vitamin $K_2$ production.

Keywords

References

  1. Booth, I. R. (1985) Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49, 359-378.
  2. Clark, P. A., Cotton, L. N., and Martin, J. H. (1993) Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods: II-Tolerance to simulated pH of Human Stomachs. Cultured Dairy Products J. 28, 11-14.
  3. Collins, M. D. and Jones, D. (1981) Distribution of isoprenoid quinine structural types in bacteria and their taxonomic implication. Microbiol. Rev. 45, 316-354.
  4. Gilliland, S. E. and Speck, M. L. (1977) Antagonistic action of Lactobacillus acidophilus toward intestinal and foodborne pathogens in associative cultures. J. Food Prot. 40, 820-823.
  5. Gilliland, S. E. and Walker, D. K. (1990) Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J. Dairy Sci. 73, 905-911. https://doi.org/10.3168/jds.S0022-0302(90)78747-4
  6. Hart, J. P., Sheaver, M. J., Klenerman, L., Catterall, A., Reeve, J., Sambrook, P. N., Dodds, R., A., Bitenky, and Chayen, J. (1985) Electrochemical detection of depressed circulating levels of vitamin $K_{1}$ in osteoporosis. J. Clin. Endocrinol. Metab. 60, 1268-1269. https://doi.org/10.1210/jcem-60-6-1268
  7. Hauschka, P. V., Lian, J. B., and Gallop, P. M. (1975) Direct identification of the calcium binding amino acid, $\gamma$-carboxy-glutamate, in mineralized tissues. Proc. Natl. Acad. Sci. USA 72, 3925-3929. https://doi.org/10.1073/pnas.72.10.3925
  8. Hauschka, P. V. and Carr, S. A. (1982) Calcium-dependent $\alpha$-helical structure in osteocalcin. Biochem. 21, 2538-2547. https://doi.org/10.1021/bi00539a038
  9. Hauschka, P. V. and Reid, M. L. (1978) Vitamin K dependence of a calcium-binding protein containing gamma-carboxyglutamic acid in chicken bone. J. Biol. Chem. 253, 9063-9068.
  10. Hojo, K., Watanabe, R., Mori, T., and Taketomo, N. (2007) Quantitative measurement of tetrahydromenaquinone-9 in cheese fermented by propionibacteria. J. Dairy Sci. 90, 4078-4083. https://doi.org/10.3168/jds.2006-892
  11. Iwamoto, J., Takeda, T., and Sato, Y. (2004) Effects of vitamin $K_{2}$ on osteoporosis. Curr. Pharm. Des. 10, 2557-2576. https://doi.org/10.2174/1381612043383782
  12. Knapen, M. H. J., Hamulyak, K., and Vermeer, C. (1989) The effect of vitamin K supplementation on circulating osteocalcin (bone gla protein) and urinary calcium excretion. Ann. Intern. Med. 111, 1001-1005. https://doi.org/10.7326/0003-4819-111-12-1001
  13. Lim, S. D., Kim, K. S., Cho, S. A., and Do, J. R. (2010) Physiological Characteristics and Immunomodulating Activity by Lactobacillus paracasei subsp. paracasei BFI46 Isolated from New-Born Infant Feces. Korean J. Food Sci. Ani. Resour. 30, 223-231. https://doi.org/10.5851/kosfa.2010.30.2.223
  14. Matsumoto, M., Ohishi, H., and Benno, Y. (2004) $H^{+}$ - ATPase activity in bifidobacterium with special reference to acid tolerance. Int. J. Food Microbiol. 93, 109-113. https://doi.org/10.1016/j.ijfoodmicro.2003.10.009
  15. Maragkoudakis, P. A., Zoumpopoulou, G., Miaris, C., Kalantzopoulos, G., Pot, B., and Tsakalidou, T. (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int. Dairy J. 16, 189-199. https://doi.org/10.1016/j.idairyj.2005.02.009
  16. Mcdonald, L. C., Fleming, H. P., and Hassan, H. M. (1990) Acid tolerance of Leuconostoc mesenteroides and Lactobacillus casei. Appl. Environ. Microbiol. 53, 2124-2128.
  17. Morishita, T., Tamura, N., Makino, T., and Kudo, S. (1999) Production of manaquinones by lactic acid bacteria. J. Dairy Sci. 82, 1897-1903. https://doi.org/10.3168/jds.S0022-0302(99)75424-X
  18. Parente, E. and Ricciardi, A. (1999) Production, recovery and purifications of bacteriocins from lactic acid bacteria. Appl. Microbiol. Biotechnol. 52, 628-638. https://doi.org/10.1007/s002530051570
  19. Price, P. A. (1985) Vitamin K-dependent formation of bone gla protein (osteocalcin) and its function. Vitam. Horm., 42, 65-108. https://doi.org/10.1016/S0083-6729(08)60061-8
  20. Price, P. A., Otsuka, A. S., Poser, J. W., Kristaponis, J., and Raman, N. (1976) Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc. Natl. Acad. Sci. USA 73, 1447-1451. https://doi.org/10.1073/pnas.73.5.1447
  21. Purves, E. (2005) Neonatal hematologic disorders. J. Pediatr. Oncol. Nurs. 22, 168-175. https://doi.org/10.1177/1043454205275514
  22. Shearer, M. J. (1990) Vitamin K and vitamin K-dependent proteins. Br. J. Haematol. 75, 156-162. https://doi.org/10.1111/j.1365-2141.1990.tb02642.x
  23. Succi, M., Tremonte, P., Reale, A., Sorrentino, E., Grazia, L., and Pacifico, S. (2005) Bile salt and acid tolerance of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol. Lett. 244, 129-137. https://doi.org/10.1016/j.femsle.2005.01.037
  24. Tani, T. and Taguchi, H. (1989) Extracellular production of menaquinone-4 by mutant of Flavobacterium sp. 238-7 with a detergent supplemented culture. J. Ferment. Bioeng. 67, 102-106. https://doi.org/10.1016/0922-338X(89)90188-8
  25. Tsukamoto, Y., Kasai, M., and Kakuda, H. (2001) Construction of a Bacillus subtilis (natto) with high productivity of vitamin $K_{2}$ (Menaquinone-7) by analog resistance. Biosci. Biotechnol. Biochem. 65, 2007-2015. https://doi.org/10.1271/bbb.65.2007
  26. Ventura, M., Canchaya, C., van Sinderen, D., Fitzgerald, G. F., and Zink, R. (2004) Bifidobacterium lactis DSM 10140: identification of the atp (atpBEFHAGDC) operon and analysis of its genetic structure, characteristics, and phylogeny. Appl. Environ. Microbiol. 70, 3110-3121. https://doi.org/10.1128/AEM.70.5.3110-3121.2004

Cited by

  1. Effect of Lactobacillus plantarum FH185 on the Reduction of Adipocyte Size and Gut Microbial Changes in Mice with Diet-induced Obesity vol.35, pp.2, 2015, https://doi.org/10.5851/kosfa.2015.35.2.171
  2. Physiological Characteristics and GABA Production of Lactobacillus plantarum K255 Isolated from Kimchi vol.33, pp.5, 2013, https://doi.org/10.5851/kosfa.2013.33.5.595
  3. Physiological Characteristics and Anti-obesity Effect of Lactobacillus plantarum Q180 Isolated from Feces vol.34, pp.5, 2014, https://doi.org/10.5851/kosfa.2014.34.5.647
  4. The probiotic characteristics and GABA production of Lactobacillus plantarum K154 isolated from kimchi vol.23, pp.6, 2014, https://doi.org/10.1007/s10068-014-0266-2
  5. 김치에서 분리한 Lactobacillus plantarum K6의 생리적 특성 및 비만억제효과 vol.35, pp.4, 2011, https://doi.org/10.22424/jmsb.2017.35.4.221
  6. Physiological Characteristics and Anti-obesity Effect of Lactobacillus plantarum K10 vol.38, pp.3, 2011, https://doi.org/10.5851/kosfa.2018.38.3.554
  7. Lactobacillus plantarum KI69의 생리적 특성 및 항당뇨 효과 vol.37, pp.4, 2011, https://doi.org/10.22424/jmsb.2019.37.4.223
  8. Lactobacillus plantarum KI134의 생리적 특성 및 이 균에 의한 우유 발효물의 항비만효과 vol.38, pp.4, 2011, https://doi.org/10.22424/jdsb.2020.38.4.207
  9. Physiological Characteristics and Anti-Diabetic Effect of Pediococcus pentosaceus KI62 vol.41, pp.2, 2021, https://doi.org/10.5851/kosfa.2020.e99
  10. Modulation of the Gut Microbiome and Obesity Biomarkers by Lactobacillus Plantarum KC28 in a Diet-Induced Obesity Murine Model vol.13, pp.3, 2021, https://doi.org/10.1007/s12602-020-09720-0
  11. Biomarkers and Utility of the Antioxidant Potential of Probiotic Lactobacilli and Bifidobacteria as Representatives of the Human Gut Microbiota vol.9, pp.10, 2021, https://doi.org/10.3390/biomedicines9101340
  12. Vitamin K in COVID-19-Potential Anti-COVID-19 Properties of Fermented Milk Fortified with Bee Honey as a Natural Source of Vitamin K and Probiotics vol.7, pp.4, 2011, https://doi.org/10.3390/fermentation7040202