References
- Booth, I. R. (1985) Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49, 359-378.
- Clark, P. A., Cotton, L. N., and Martin, J. H. (1993) Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods: II-Tolerance to simulated pH of Human Stomachs. Cultured Dairy Products J. 28, 11-14.
- Collins, M. D. and Jones, D. (1981) Distribution of isoprenoid quinine structural types in bacteria and their taxonomic implication. Microbiol. Rev. 45, 316-354.
- Gilliland, S. E. and Speck, M. L. (1977) Antagonistic action of Lactobacillus acidophilus toward intestinal and foodborne pathogens in associative cultures. J. Food Prot. 40, 820-823.
- Gilliland, S. E. and Walker, D. K. (1990) Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J. Dairy Sci. 73, 905-911. https://doi.org/10.3168/jds.S0022-0302(90)78747-4
-
Hart, J. P., Sheaver, M. J., Klenerman, L., Catterall, A., Reeve, J., Sambrook, P. N., Dodds, R., A., Bitenky, and Chayen, J. (1985) Electrochemical detection of depressed circulating levels of vitamin
$K_{1}$ in osteoporosis. J. Clin. Endocrinol. Metab. 60, 1268-1269. https://doi.org/10.1210/jcem-60-6-1268 -
Hauschka, P. V., Lian, J. B., and Gallop, P. M. (1975) Direct identification of the calcium binding amino acid,
$\gamma$ -carboxy-glutamate, in mineralized tissues. Proc. Natl. Acad. Sci. USA 72, 3925-3929. https://doi.org/10.1073/pnas.72.10.3925 -
Hauschka, P. V. and Carr, S. A. (1982) Calcium-dependent
$\alpha$ -helical structure in osteocalcin. Biochem. 21, 2538-2547. https://doi.org/10.1021/bi00539a038 - Hauschka, P. V. and Reid, M. L. (1978) Vitamin K dependence of a calcium-binding protein containing gamma-carboxyglutamic acid in chicken bone. J. Biol. Chem. 253, 9063-9068.
- Hojo, K., Watanabe, R., Mori, T., and Taketomo, N. (2007) Quantitative measurement of tetrahydromenaquinone-9 in cheese fermented by propionibacteria. J. Dairy Sci. 90, 4078-4083. https://doi.org/10.3168/jds.2006-892
-
Iwamoto, J., Takeda, T., and Sato, Y. (2004) Effects of vitamin
$K_{2}$ on osteoporosis. Curr. Pharm. Des. 10, 2557-2576. https://doi.org/10.2174/1381612043383782 - Knapen, M. H. J., Hamulyak, K., and Vermeer, C. (1989) The effect of vitamin K supplementation on circulating osteocalcin (bone gla protein) and urinary calcium excretion. Ann. Intern. Med. 111, 1001-1005. https://doi.org/10.7326/0003-4819-111-12-1001
- Lim, S. D., Kim, K. S., Cho, S. A., and Do, J. R. (2010) Physiological Characteristics and Immunomodulating Activity by Lactobacillus paracasei subsp. paracasei BFI46 Isolated from New-Born Infant Feces. Korean J. Food Sci. Ani. Resour. 30, 223-231. https://doi.org/10.5851/kosfa.2010.30.2.223
-
Matsumoto, M., Ohishi, H., and Benno, Y. (2004)
$H^{+}$ - ATPase activity in bifidobacterium with special reference to acid tolerance. Int. J. Food Microbiol. 93, 109-113. https://doi.org/10.1016/j.ijfoodmicro.2003.10.009 - Maragkoudakis, P. A., Zoumpopoulou, G., Miaris, C., Kalantzopoulos, G., Pot, B., and Tsakalidou, T. (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int. Dairy J. 16, 189-199. https://doi.org/10.1016/j.idairyj.2005.02.009
- Mcdonald, L. C., Fleming, H. P., and Hassan, H. M. (1990) Acid tolerance of Leuconostoc mesenteroides and Lactobacillus casei. Appl. Environ. Microbiol. 53, 2124-2128.
- Morishita, T., Tamura, N., Makino, T., and Kudo, S. (1999) Production of manaquinones by lactic acid bacteria. J. Dairy Sci. 82, 1897-1903. https://doi.org/10.3168/jds.S0022-0302(99)75424-X
- Parente, E. and Ricciardi, A. (1999) Production, recovery and purifications of bacteriocins from lactic acid bacteria. Appl. Microbiol. Biotechnol. 52, 628-638. https://doi.org/10.1007/s002530051570
- Price, P. A. (1985) Vitamin K-dependent formation of bone gla protein (osteocalcin) and its function. Vitam. Horm., 42, 65-108. https://doi.org/10.1016/S0083-6729(08)60061-8
- Price, P. A., Otsuka, A. S., Poser, J. W., Kristaponis, J., and Raman, N. (1976) Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc. Natl. Acad. Sci. USA 73, 1447-1451. https://doi.org/10.1073/pnas.73.5.1447
- Purves, E. (2005) Neonatal hematologic disorders. J. Pediatr. Oncol. Nurs. 22, 168-175. https://doi.org/10.1177/1043454205275514
- Shearer, M. J. (1990) Vitamin K and vitamin K-dependent proteins. Br. J. Haematol. 75, 156-162. https://doi.org/10.1111/j.1365-2141.1990.tb02642.x
- Succi, M., Tremonte, P., Reale, A., Sorrentino, E., Grazia, L., and Pacifico, S. (2005) Bile salt and acid tolerance of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol. Lett. 244, 129-137. https://doi.org/10.1016/j.femsle.2005.01.037
- Tani, T. and Taguchi, H. (1989) Extracellular production of menaquinone-4 by mutant of Flavobacterium sp. 238-7 with a detergent supplemented culture. J. Ferment. Bioeng. 67, 102-106. https://doi.org/10.1016/0922-338X(89)90188-8
-
Tsukamoto, Y., Kasai, M., and Kakuda, H. (2001) Construction of a Bacillus subtilis (natto) with high productivity of vitamin
$K_{2}$ (Menaquinone-7) by analog resistance. Biosci. Biotechnol. Biochem. 65, 2007-2015. https://doi.org/10.1271/bbb.65.2007 - Ventura, M., Canchaya, C., van Sinderen, D., Fitzgerald, G. F., and Zink, R. (2004) Bifidobacterium lactis DSM 10140: identification of the atp (atpBEFHAGDC) operon and analysis of its genetic structure, characteristics, and phylogeny. Appl. Environ. Microbiol. 70, 3110-3121. https://doi.org/10.1128/AEM.70.5.3110-3121.2004
Cited by
- Effect of Lactobacillus plantarum FH185 on the Reduction of Adipocyte Size and Gut Microbial Changes in Mice with Diet-induced Obesity vol.35, pp.2, 2015, https://doi.org/10.5851/kosfa.2015.35.2.171
- Physiological Characteristics and GABA Production of Lactobacillus plantarum K255 Isolated from Kimchi vol.33, pp.5, 2013, https://doi.org/10.5851/kosfa.2013.33.5.595
- Physiological Characteristics and Anti-obesity Effect of Lactobacillus plantarum Q180 Isolated from Feces vol.34, pp.5, 2014, https://doi.org/10.5851/kosfa.2014.34.5.647
- The probiotic characteristics and GABA production of Lactobacillus plantarum K154 isolated from kimchi vol.23, pp.6, 2014, https://doi.org/10.1007/s10068-014-0266-2
- 김치에서 분리한 Lactobacillus plantarum K6의 생리적 특성 및 비만억제효과 vol.35, pp.4, 2011, https://doi.org/10.22424/jmsb.2017.35.4.221
- Physiological Characteristics and Anti-obesity Effect of Lactobacillus plantarum K10 vol.38, pp.3, 2011, https://doi.org/10.5851/kosfa.2018.38.3.554
- Lactobacillus plantarum KI69의 생리적 특성 및 항당뇨 효과 vol.37, pp.4, 2011, https://doi.org/10.22424/jmsb.2019.37.4.223
- Lactobacillus plantarum KI134의 생리적 특성 및 이 균에 의한 우유 발효물의 항비만효과 vol.38, pp.4, 2011, https://doi.org/10.22424/jdsb.2020.38.4.207
- Physiological Characteristics and Anti-Diabetic Effect of Pediococcus pentosaceus KI62 vol.41, pp.2, 2021, https://doi.org/10.5851/kosfa.2020.e99
- Modulation of the Gut Microbiome and Obesity Biomarkers by Lactobacillus Plantarum KC28 in a Diet-Induced Obesity Murine Model vol.13, pp.3, 2021, https://doi.org/10.1007/s12602-020-09720-0
- Biomarkers and Utility of the Antioxidant Potential of Probiotic Lactobacilli and Bifidobacteria as Representatives of the Human Gut Microbiota vol.9, pp.10, 2021, https://doi.org/10.3390/biomedicines9101340
- Vitamin K in COVID-19-Potential Anti-COVID-19 Properties of Fermented Milk Fortified with Bee Honey as a Natural Source of Vitamin K and Probiotics vol.7, pp.4, 2011, https://doi.org/10.3390/fermentation7040202