References
- Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 2006; 36(3): 189-217. https://doi.org/10.1080/10408440600570233
- Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311(5761): 622-627. https://doi.org/10.1126/science.1114397
- Firme CP 3rd, Bandaru PR. Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine 2010; 6(2): 245-256. https://doi.org/10.1016/j.nano.2009.07.003
- Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113(7): 823-839. https://doi.org/10.1289/ehp.7339
- Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Moller P. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect 2009; 117(5): 703-708. https://doi.org/10.1289/ehp.11922
- Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocytes cells. J Toxicol Environ Health A 2003; 66(20): 1909-1926. https://doi.org/10.1080/713853956
- Zhu L, Chang DW, Dai L, Hong Y. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett 2007; 7(12): 3592-3597. https://doi.org/10.1021/nl071303v
- Pacurari M, Yin XJ, Zhao J, Ding M, Leonard SS, Schwegler-Berry D, et al. Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 2008; 116(9): 1211-1217. https://doi.org/10.1289/ehp.10924
- Karlsson HL, Cronholm P, Gustafsson J, Moller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 2008; 21(9): 1726-1732. https://doi.org/10.1021/tx800064j
- Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, et al. Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 2008; 33(1): 105-116. https://doi.org/10.2131/jts.33.105
- Kovacic P, Somanathan R. Mechanism of teratogenesis: electron transfer, reactive oxygen species, and antioxidants. Birth Defects Res C Embryo Today 2006; 78(4): 308-325. https://doi.org/10.1002/bdrc.20081
- Chung MK, Kim CY, Kim JC. Reproductive toxicity evaluation of a new camptothecin anticancer agent, CKD-602, in pregnant/lactating female rats and their offspring. Cancer Chemother Pharmacol 2007; 59(3): 383-395.
- Kim JS, Lee K, Lee YH, Cho HS, Kim KH, Choi KH, et al. Aspect ratio has no effect on genotoxicity of multi-wall carbon nanotubes. Arch Toxicol DOI 10.1007/s00204-010-0574-0.
- Chen HH, Yu C, Ueng TH, Chen S, Chen BJ, Huang KJ, et al. Acute and subacute toxicity study of water-soluble polyalkylsulfonated C60 in rats. Toxicol Pathol 1998; 26(1): 143-151. https://doi.org/10.1177/019262339802600117
- Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with Folin phenol reagent. J Biol Chem 1951; 193(1): 265-275.
- Aebi H. Catalase in vitro. Methods Enzymol 1984; 105: 121-126.
- Carlberg I, Mannervik B. Reduction of 2,4,6-trinitrobenzene-sulfonate by glutathione reductase and the effect of NADP+ on the electron transfer, J Biol Chem 1986; 261(4): 1629-1635.
- Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967; 70(1): 158-169.
- Habig WH, Jakoby WB, Guthenberg C, Mannervik B, Vander Jagt DL. 2-Propylthiouracil does not replace glutathione for the glutathione transferases. J Biol Chem 1984; 259(12): 7409-7410.
- Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochem Biophys Acta 1979; 582(1): 67-78. https://doi.org/10.1016/0304-4165(79)90289-7
- Berton TR, Conti CJ, Mitchell DL, Aldaz CM, Lubet RA, Fischer SM. The effect of vitamin E acetate on ultraviolet-induced mouse skin carcinogenesis. Mol Carcinog 1998; 23(3): 175-184. https://doi.org/10.1002/(SICI)1098-2744(199811)23:3<175::AID-MC6>3.0.CO;2-B
- Lee JC, Shin IS, Ahn TH, Kim KH, Moon C, Kim SH, et al. Developmental toxic potential of 1,3-dichloro-2-propanol in Sprague-Dawley rats. Regul Toxicol Pharmacol 2009; 53(1): 63-69. https://doi.org/10.1016/j.yrtph.2008.11.001
- Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 2005; 207(3): 221-231. https://doi.org/10.1016/j.taap.2005.01.008
- Pauluhn J. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci 2010; 113(1): 226-242. https://doi.org/10.1093/toxsci/kfp247
- Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 2006; 160(2): 121-126. https://doi.org/10.1016/j.toxlet.2005.06.020
- Bottini M, Tautz L, Huynh H, Monosov E, Bottini N, Dawson MI, et al. Covalent decoration of multi-walled carbon nanotubes with silica nanoparticles. Chem Commun (Camb) 2005; (6): 758-760.
- Patlolla A, Knighten B, Tchounwou P. Multi-walled carbon nanotubes induce cytotoxicity, genotoxicity and apoptosis in normal human dermal fibroblast cells. Ethn Dis 2010; 20(1 Suppl 1): S1-65-72.
- Cui D, Tian F, Ozkan CS, Wang M, Gao H. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 2005; 155(1): 73-85. https://doi.org/10.1016/j.toxlet.2004.08.015
- Wirnitzer U, Herbold B, Voetz M, Ragot J. Studies on the in vitro genotoxicity of baytubes, agglomerates of engineered multi-walled carbon-nanotubes (MWCNT). Toxicol Lett 2009; 186(3): 160-165. https://doi.org/10.1016/j.toxlet.2008.11.024
- Di Sotto A, Chiaretti M, Carru GA, Bellucci S, Mazzanti G. Multi-walled carbon nanotubes: Lack of mutagenic activity in the bacterial reverse mutation assay. Toxicol Lett 2009; 184(3): 192-197. https://doi.org/10.1016/j.toxlet.2008.11.007
- Liang G, Yin L, Zhang J, Liu R, Zhang T, Ye B, et al. Effects of subchronic exposure to multi-walled carbon nanotubes on mice. J Toxicol Environ Health A 2010; 73(7): 463-470. https://doi.org/10.1080/15287390903523378
- Huczko A, Lange H, Calko E, Grubek-Jaworska H, Droszcz P. Physiological testing of carbon nanotubes: are they asbestos-like? Fullerene Sci Technol 2001; 9(2): 251-254. https://doi.org/10.1081/FST-100102973
- Mitchell LA, Gao J, Wal RV, Gigliotti A, Burchiel SW, McDonald JD. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 2007; 100(1): 203-214. https://doi.org/10.1093/toxsci/kfm196
- Li JG, Li WX, Xu JY, Cai XQ, Liu RL, Li YJ, et al. Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ Toxicol 2007; 22(4): 415-421. https://doi.org/10.1002/tox.20270
Cited by
- Bioaccumulation and ecotoxicity of carbon nanotubes vol.7, pp.None, 2013, https://doi.org/10.1186/1752-153x-7-154
- Study of mutagenic and cytotoxic effects of multiwalled carbon nanotubes and activated carbon in six organs of mice in vivo vol.10, pp.3, 2011, https://doi.org/10.1134/s1995078015020184
- Therapeutic and safety considerations of nanoparticle-mediated drug delivery in pregnancy vol.10, pp.14, 2011, https://doi.org/10.2217/nnm.15.48
- Carbon nanotube toxicity: The smallest biggest debate in medical care vol.3, pp.1, 2011, https://doi.org/10.1080/2331205x.2016.1217970
- Effects of prenatal exposure to single-wall carbon nanotubes on reproductive performance and neurodevelopment in mice vol.32, pp.7, 2016, https://doi.org/10.1177/0748233714555388
- Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery vol.22, pp.5, 2016, https://doi.org/10.1093/humupd/dmw020
- Toxicity assessment of nanoparticles in various systems and organs vol.6, pp.3, 2011, https://doi.org/10.1515/ntrev-2016-0047
- Current understanding of the toxicological risk posed to the fetus following maternal exposure to nanoparticles vol.13, pp.12, 2011, https://doi.org/10.1080/17425255.2018.1397131
- Potential adverse effects of nanoparticles on the reproductive system vol.13, pp.None, 2011, https://doi.org/10.2147/ijn.s170723
- Carbon nanotubes: mechanisms of the action, biological markers and evaluation of the (review of literature) vol.96, pp.2, 2019, https://doi.org/10.18821/0016-9900-2017-96-2-176-186
- TOXICITY OF CARBON NANOTUBES: SPECIFIC AND DISTANT EFFECTS, EXPOSURE SCENARIOS, RISK ASSESSMENT (REVIEW OF LITERATURE) vol.96, pp.8, 2011, https://doi.org/10.18821/0016-9900-2017-96-8-770-779
- The Advances in Biomedical Applications of Carbon Nanotubes vol.5, pp.2, 2011, https://doi.org/10.3390/c5020029
- Carbon nanotubes: Evaluation of toxicity at biointerfaces vol.9, pp.5, 2011, https://doi.org/10.1016/j.jpha.2019.04.003
- Nanoparticles induced embryo-fetal toxicity vol.36, pp.3, 2011, https://doi.org/10.1177/0748233720918689
- Effects of QDs exposure on the reproductive and embryonic developmental toxicity in mice at various pregnancy stages vol.9, pp.4, 2011, https://doi.org/10.1093/toxres/tfaa034
- Fetotoxicity of Nanoparticles: Causes and Mechanisms vol.11, pp.3, 2011, https://doi.org/10.3390/nano11030791