DOI QR코드

DOI QR Code

Immobilization of Recombinant Bacterial Biosensors: a Simple Approach for the On-Site Detection of Phenolic Compounds

재조합 박테리아 바이오센서의 고정화: 페놀계 화합물의 현장 검출을 위한 간단한 접근 방법

  • Shin, Hae-Ja (Energy Environmental Engineering Major, Division of Energy Bioengineering, Dongseo University)
  • 신혜자 (동서대학교 에너지생명공학부 에너지환경공학)
  • Received : 2011.08.01
  • Accepted : 2011.09.05
  • Published : 2011.09.30

Abstract

We herein report the development of an agarose-gel-immobilized recombinant bacterial biosensor simple system for the field monitoring of phenolic compounds. Escherichia coli cells harboring the pLZCapR plasmid, which was previously designed to express the ${\beta}$-galactosidase reporter gene in the presence of phenolic compounds, were co-immobilized with a substrate [chlorophenol red ${\beta}$-galactopyranoside (CPRG) in agarose gel, and dispensed to the wells of a 96-well plate. Field samples were added to the wells and color development was monitored. In the presence of 5 ${\mu}M$ to 10 mM of phenol, the biosensor developed a red (representing hydrolysis of CPRG) color. Other phenolic compounds were also detected by this immobilized system, with the pattern resembling that previously reported for the corresponding non-immobilized biosensor. The immobilized cells showed optimum activity when the gel was simultaneously supplemented with 6% dimethyl formamide (DMF), 0.1% SDS and 10 mM $CaCl_2$. The immobilized biosensor described herein does not require the addition of a substrate or the use of unwieldy instruments or sample pretreatments that could complicate field studies.

본 연구에서는 페놀 화합물들을 현장에서 검출하기 위해 간단하고 간편한 일회용 재조합 박테리아 바이오센서 시스템을 개발하였다. 플라즈미드 pLZCapR을 함유하는 E. coli 세포를 ${\beta}$-galactosidase 기질인 CPRG와 함께 96-well plate의 wells에 agarose로 고정하였다. 이 바이오센서는 현장에서 발색을 위한 별도의 기질을 추가하거나 불편한 기기 사용 또는 시료의 전 처리를 필요로 하지 않는다. 시료의 측정은 간단히 적은 부피(<100 ${\mu}l$)의 현장 시료를 바이오센서를 포함하는 wells에 넣고 발색을 관찰하여 측정하였다. 또한 6% DMF, 0.1% SDS 그리고 10 mM $CaCl_2$를 첨가하여 agarose 고정에 의한 화합물의 세포내 확산 제한을 감소시켜 보다 더 나은 발색을 얻을 수 있었다. 따라서 이 고정된 미생물 유래 재조합 바이오센서 시스템은 현장에서 환경오염물질들을 간단하게 확인하고 정량 하는 유용한 접근 방법이 될 것으로 사료된다.

Keywords

References

  1. Alvarez, G. S., M. L. Foglia, G. J. Copello, M. F. Desimone, and L. E. Diaz. 2009. Effect of various parameters on viability and growth of bacteria immobilized in sol-gel-derived silica matrices. Appl. Microbiol. Biotechnol. 82, 639-646. https://doi.org/10.1007/s00253-008-1783-9
  2. Angelova, B. and H. Schmauder. 1999. Lipophilic compounds in biotechnology-interactions with cells and technological problems. J. Biotechnol. 67, 13-32. https://doi.org/10.1016/S0168-1656(98)00139-4
  3. Belkin, S. 2003. Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 6, 206-212. https://doi.org/10.1016/S1369-5274(03)00059-6
  4. Bettaieb, F., L. Ponsonnet, P. Lejeune, H. Ben Ouada, C. Martelet, A. Bakhrouf, N. Jaffrézic-Renault, and A. Othmane. 2007. Immobilization of E. coli bacteria in three-dimensional matrices for ISFET biosensor design. Bioelectrochemistry 71, 118-125. https://doi.org/10.1016/j.bioelechem.2007.02.004
  5. Desimone, M. F., M. C. De Marzi, G. J. Copello, M. M. Fernandez, F. L. Pieckenstain, E. L. Malchiodi, and L. E. Diaz. 2006. Production of recombinant proteins by sol-gel immobilized Escherichia coli. Enz. Microb. Technol. 40, 168-171. https://doi.org/10.1016/j.enzmictec.2005.11.052
  6. D'Souza, S. F. 2001. Microbial biosensors. Biosens. Bioelectron. 16, 337-353. https://doi.org/10.1016/S0956-5663(01)00125-7
  7. Eustice, D. C., P. A. Feldman, A. M. Colberg-Poley, R. M. Buckery, and R. H. Neubaue. 1991. A sensitive method for the detection of beta-galactosidase transfected mammalian cells. Biotechniques 6, 739-743.
  8. Galvao, T. C. and V. de Lorenzo. 2006. Transcriptional regulators à la carte: engineering new effector specificities in bacterial regulatory proteins. Curr. Opin. Biotechnol. 17, 34-42. https://doi.org/10.1016/j.copbio.2005.12.002
  9. Harms, H., M. C. Wells, and J. R. van der Meer. 2006. Whole-cell living biosensors-are they ready for environmental application? Appl. Microbiol. Biotechnol. 70, 273-280. https://doi.org/10.1007/s00253-006-0319-4
  10. Kelsey, J. W., B. D. Kottler, and M. Alexander. 1997. Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ. Sci. Technol. 31, 214-217. https://doi.org/10.1021/es960354j
  11. Kim, M. N., H. H. Park, W. K. Lim, and H. J. Shin. 2003. Viability and luciferase activity of freeze-dried recombinant biosensor cells for detecting aromatic hydrocarbons. J. Biomed. Lab. Sci. 9, 195-201.
  12. Kim, M. N., H. H. Park, W. K. Lim, and H. J. Shin. 2005. Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds. J. Microbiol. Methods 60, 235-245. https://doi.org/10.1016/j.mimet.2004.09.018
  13. Lei, Y., W. Chen, and A. Mulchandani. 2006. Microbial biosensors. Anal. Chim. Acta 568, 200-210. https://doi.org/10.1016/j.aca.2005.11.065
  14. Matsui, N., T. Kaya, K. Nagamine, T. Yasukawa, H. Shiku, and T. Matsue. 2006. Electrochemical mutagen screening using microbial chip. Biosens. Bioelectron. 21, 1201-1209.
  15. Medintz, I. L. and J. R. Deschamps. 2006. Maltose-binding protein: a versatile platform for prototyping biosensing. Curr. Opin. Biotechnol. 17, 17-27. https://doi.org/10.1016/j.copbio.2006.01.002
  16. Moat, A. G. and J. W. Foster. 1995. Microbial Physiology. Wiley/Liss, New York.
  17. Park, H. H., H. Y. Lee, W. K. Lim, and H. J. Shin. 2005b. NahR: effects of replacements at Asn 169 and Arg 248 on promoter binding and inducer recognition. Arch. Biochem. Biophys. 434, 67-74. https://doi.org/10.1016/j.abb.2004.10.020
  18. Park, H. H., W. K. Lim, and H. J. Shin. 2005a. In vitro binding of purified NahR regulatory protein with promoter Psal. Biochim. Biophys. Acta 1725, 247-255. https://doi.org/10.1016/j.bbagen.2005.05.015
  19. Park, S. M., H. H. Park, W. K. Lim, and H. J. Shin. 2003. A new variant activator involved in the degradation of phenolic compounds from a strain of Pseudomonas putida. J. Biotechnol. 103, 227-236. https://doi.org/10.1016/S0168-1656(03)00122-6
  20. Rapoport, N., A. I. Smirnov, A. Timoshin, A. M. Pratt, and W. G. Pitt. 1997. Factors affecting the permeability of Pseudomonas aeruginosa cell walls toward lipophilic compounds: Effects of ultrasound and cell age. Arch. Biochem. Biophys. 344, 114-124. https://doi.org/10.1006/abbi.1997.0176
  21. Ron, E. Z. 2007. Biosensing environmental pollution. Curr. Opin. Biotechnol. 18, 252-256. https://doi.org/10.1016/j.copbio.2007.05.005
  22. Sambrook, J., E. F. Fritsch, and T. Maniatis. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
  23. Shin, H. J., H. H. Park, and W. K. Lim. 2005. Freeze-dried recombinant bacteria for on-site detection of phenolic compounds by color change. J. Biotechnol. 119, 36-43. https://doi.org/10.1016/j.jbiotec.2005.06.002
  24. Shin, H. J. 2011. Genetically engineered microbial biosensors for in situ monitoring of environmental pollution. Appl. Microbiol. Biotechnol.89, 867-877. https://doi.org/10.1007/s00253-010-2990-8
  25. Shin, H. J. 2010. Development of highly-sensitive microbial biosensor by mutation of the nahR regulatory gene. J. Biotechnol. 150, 246-250.