DOI QR코드

DOI QR Code

Global Gene Expression Changes by Several Phytochemicals in Human Colorectal Cancer Cell

인간 대장암 세포주에서 파이토케미칼 처리에 의한 유전자 발현 변화

  • Park, Min-Hee (Department of Biological Sciences, Andong National University) ;
  • Kwak, Eun-Hee (Department of Biological Sciences, Andong National University) ;
  • Sohn, Ho-Yong (Department of Food and Nutrition, Andong National University) ;
  • Eling, Thomas (Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health) ;
  • Kim, Jong-Sik (Department of Biological Sciences, Andong National University)
  • Received : 2011.07.12
  • Accepted : 2011.09.08
  • Published : 2011.09.30

Abstract

Phytochemicals, non-nutrient chemicals derived from plants, have been shown to have anti-inflammation, anti-oxidation, and chemopreventive effects. In the current study, we investigated whether five different phytochemicals (resveratrol, genistein, epicatechin gallate, diallyl disulfide, and caffeic acid phenethyl ester) alter cell growth and gene expression in human colorectal cancer HCT116 cells. Using a cell viability assay, we found that each of the phytochemicals tested inhibited HCT116 cell growth in a dose-dependent manner. Additionally, using human oligo DNA microarray analysis, we found that only six genes were commonly up-regulated and seven genes were commonly down-regulated in response to each phytochemical treatment. For the commonly up-regulated genes, the microarray analysis was confirmed by reverse transcription.PCR using gene-specific primers. In addition, NAG-1 protein was up-regulated by all treated phytochemcials. The results of this study may help to enhance our understanding of the general molecular mechanisms of chemoprevention that are mediated by phytochemicals in human colorectal cancer.

파이토케미칼은 식물유래의 비 영양 성분으로서 항염증, 항산화, 및 화학적 암 예방 등의 생리활성을 가지고 있는 물질이다. 본 연구에서, 우리는 다섯 가지의 다른 파이토케미칼(resveratrol, genistein, epicatechin gallate, diallyl disulfide, caffeic acid phenethyl ester)이 대장암 세포주의 성장과 유전자 발현에 미치는 영향을 연구하였다. 세포 생존율 연구결과, 처리한 ECG를 제외한 모든 파이토케미칼에 의해 농도의존적으로 세포생존율이 감소함을 확인하였다. 또한, oligo DNA microarray 실험을 통해 다섯 종류의 파이토케미칼에 의해 공통적으로 증가 되는 유전자 6개와 공통적으로 발현이 감소되는 유전자 7개를 선별하였다. 공통적으로 발현이 증가되는 유전자를 선택하여 RT-PCR 방법을 통해 발현을 증명하였다. 또한, 파이토케미칼에 의한 NAG-1 단백질의 발현 증가도 확인하였다. 이러한 연구결과는 파이토케미칼에 의해 중재되어 지는 화학적 암 예방법의 일반적인 분자 기전을 이해하는데 도움을 줄 것으로 생각된다.

Keywords

References

  1. Andlauer, W., P. Stehle, and P. Furst. 1998. Chemoprevention-a novel approach in diebetics. Curr. Opin. Clin. Nutr. Metab. Care 1, 539-547. https://doi.org/10.1097/00075197-199811000-00011
  2. Baek, S. J., K. S. Kim, J. B. Nixon, L. C. Wilson, and T. E. Eling. 2001. Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities. Mol. Pharmacol. 59, 901-908.
  3. Baek, S. J., L. C. Wilson, and T. E. Eling. 2002. Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-1) by increasing the expression of p53. Carcinogenesis 23, 425-434. https://doi.org/10.1093/carcin/23.3.425
  4. Baek, S. J., J. S. Kim, F. R. Jackson, T. E. Eling, M. F. McEntee, and S. H. Lee. 2004. Epicatechin gallate-induced expression of NAG-1 is associated with growth inhibition and apoptosis in colon cancer cells. Carcinogenesis 25, 2425-2432. https://doi.org/10.1093/carcin/bgh255
  5. Baek, S. J., J. S. Kim, S. M. Moore, S. H. Lee, J. Martinez, and T. E. Eling. 2005. Cyclooxygenase inhibitors induce the expression of the tumor suppressor gene EGR-1, which results in the up-regulation of NAG-1, an antitumorigenic protein. Mol. Pharmacol. 67, 356-364.
  6. Bafico, A., G. Liu, A. Yaniv, A. Gazit, and S. A. Aaronson. 2001. Novel mechanism of Wnt signaling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat. Cell Biol. 3, 683-686. https://doi.org/10.1038/35083081
  7. Dai, H., M. Meyer, S. Stepaniants, M. Ziman, and R. Stoughton. 2002. Use of hybridization kinetics for differentiation specific from non-specific binding to oligonucleotide microarrays. Nucleic Acids Res. 30, e86. https://doi.org/10.1093/nar/gnf085
  8. Delmas, D., P. Passilly-Degrace, B. Jannin, M. Cherkaoui, and N. Latruffe. 2002. Resveratrol, a chemopreventive agent, disrupts the cell cycle control of human SW480 colorectal tumor cells. Int. J. Mol. Med. 10, 193-199.
  9. Greenlee, R. T., T. Murray, S. Bolden, and P. A. Wingo. 2000. Cancer statistics. 2000 CA Cancer J. Clin. 50, 7-33. https://doi.org/10.3322/canjclin.50.1.7
  10. Gunadharini, D. N., A. Arunkumar, G. Krishnamoorthy, R. Muthuvel, M. R. Vijayababu, P. Kanaqaraj, N. Srinivasan, M. M. Aruldhas, and J. Arunakaran. 2006. Antiproliferative effect of diallyl disulfide (DADS) on prostate cancer cell line LNCaP. Cell Biochem. Funct. 24, 407-412. https://doi.org/10.1002/cbf.1262
  11. Hawk, E. T., A. Umar, and J. L. Viner. 2004. Colorectal cancer chemoprevention-An overview of the science. Gastroenterology 126, 1423-1447. https://doi.org/10.1053/j.gastro.2004.03.002
  12. Jin, S., L. Mazzacurati, X. Zhu, T. Tong, Y. Song, S. Shujuan, K. L. Petrik, B. Rajasekaran, M. Wu, and Q. Zhan. 2003. Gadd45a contributes to p53 stabilization in response to DNA damage. Oncogene 22, 8536-8540. https://doi.org/10.1038/sj.onc.1206907
  13. Jr Bottone, F. G., S. J. Baek, J. B. Nixon, and T. E. Eling. 2002. Diallyl disulfide (DADS) induces the antitumorigenic NSAID-activated gene (NAG-1) by a p53-dependent mechanism in human colorectal HCT116 cells. J. Nutr. 132, 773-778.
  14. Lamprecht, S. A. and M. Lipkin. 2003. Chemoprevention of colon cancer by calcium, vitamin D and folate: molecular mechanisms. Nat. Rev. Cancer 3, 601-614. https://doi.org/10.1038/nrc1144
  15. Lee, Y. J., H. C. Kuo, C. Y. Chu, C. J. Wang, W. C. Lin, and T. H. Tseng. 2003. Involvement of tumor suppressor protein p53 and p38 MAPK in caffeic acid penethyl ester-induced apoptosis of C6 glioma cells. Biochem. Phramacol. 66, 2281-2289. https://doi.org/10.1016/j.bcp.2003.07.014
  16. Lee, S. H., J. S. Kim, K. Yamaguchi, T. E. Eling, and S. J. Baek. 2005. Indole-3-carbinol and 3.3'-diindolylmethane induce expression of NAG-1 in a p53-independent manner. Biochem. Biophys. Res. Commun. 328, 63-69. https://doi.org/10.1016/j.bbrc.2004.12.138
  17. Li, Q. X., N. Ke, R. Sundaram, and F. Wong-Staal. 2006. NR4A1, 2, 3-an orphan nuclear hormone receptor family involved in cell apoptosis and carcinogenesis. Histol. Histopathol. 21, 533-540.
  18. Lu, H. F., C. C. Sue, C. S. Yu, S. C. Chen, G. W. Chen, and J. G. Chung. 2004. Diallyl disulfide (DADS) induced apoptosis undergo caspase-3 activity in human bladder cancer T24 cells. Food Chem. Toxicol. 42, 1543-1552. https://doi.org/10.1016/j.fct.2003.06.001
  19. Mahyer-Roemer, M., A. Katsen, P. Mestres, and K. Roemer. 2001. Resveratrol induces colon tumor cell apoptosis independently of p53 and precede by epithelial differentiation, mitochondrial proliferation and membrane potential collapse. Int. J. Cancer 94, 615-622. https://doi.org/10.1002/ijc.1516
  20. Mao, B., W. Wu, G. Davidson, J. Marhold, M. Li, B. M. Mechler, H. Delius, D. Hoppe, P. Stannek, C. Walter, A. Glinka, and C. Niehrs. 2002. Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signaling. Nature 417, 664-667. https://doi.org/10.1038/nature756
  21. Ricchi, P., R. Zarrilli, A. Di Palma, and A. W. Acquaviva. 2003. Nonsteroidal anti-inflammatory drugs in colorectal cancer: from prevention to therapy. Br. J. Cancer 88, 803-807. https://doi.org/10.1038/sj.bjc.6600829
  22. Salti, G. I., S. Grewal, R. R. Mehta, T. K. Das Gupta, A. W. Jr. Boddie, and A. I. Constantinou. 2000. Genistein induces apoptosis and topoisomerase II-mediated DNA breakage in colon cancer cell. Biochem. Biophys. Res. Commun. 36, 796-802.
  23. Surh, Y. J. 2003. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3, 768-780. https://doi.org/10.1038/nrc1189
  24. Wang, D., D. B. Xiang, Y. J. He, Z. P. Li, X. H. Wu, J. H. Mou, H. L. Xiao, and O. H. Zhang. 2005. Effect of caffeic aicd penethyl ester on proliferation and apoptosis of colorectal cancer cells in vitro. World J. Gastroenterol. 11, 4008-4012.
  25. Wilson, C., S. J. Baek, A. Call, and T. E. Eling. 2003. Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) is induced by genistein through the expression of p53 in colorectal cancer cells. Int. J. Cancer 105, 747-753. https://doi.org/10.1002/ijc.11173
  26. Xiao, D., J. T. Pinto, G. G. Gundersen, and I. B. Weinstein. 2005. Effects of a series of organosulfur compounds on mitotic arrest and induction of apoptosis in colon cancer cells. Mol. Cancer Ther. 4, 1388-1398. https://doi.org/10.1158/1535-7163.MCT-05-0152
  27. Yoshida, T., A. Maeda, M. Horinaka, T. Shiraishi, S. Nakata, M. Wakada, S. Yogosawa, and T. Sakai. 2005. Quercetin induces gadd45 expression through a p53-independent pathway. Oncol. Rep. 14, 1299-1303.
  28. Yu, Z., W. Li, and F. Liu. 2004. Inhibition of proliferation and induction of apoptosis by genistein in colon cancer HT-29 cells. Cancer Lett. 215, 159-166. https://doi.org/10.1016/j.canlet.2004.06.010

Cited by

  1. Resveratrol Up-regulates Cysteine-rich Angiogenic Inducer 61 (CYR61) in Human Colorectal Cancer Cells vol.23, pp.2, 2013, https://doi.org/10.5352/JLS.2013.23.2.207