DOI QR코드

DOI QR Code

Comparison of Statistical Methods for Optimization of Salts in Medium for Production of Carboxymethylcellulase of Bacillus amyloliquefaciens DL-3 by a Recombinant E. coli JM109/DL-3

Bacillus amyloliquefaciens DL-3의 carboxymethylcellulase를 재조합 균주 E. coli JM109/DL-3에서 생산하는 배지의 염 농도를 최적화하기 위한 통계학적 실험 방법의 비교

  • Lee, You-Jung (Department of Medical Bioscience, Graduate School of Dong-A University) ;
  • Kim, Hye-Jin (Department of Medical Bioscience, Graduate School of Dong-A University) ;
  • Gao, Wa (Department of Medical Bioscience, Graduate School of Dong-A University) ;
  • Chung, Chung-Han (BK21 Bio-Silver Program of Dong-A University) ;
  • Lee, Jin-Woo (BK21 Bio-Silver Program of Dong-A University)
  • 이유정 (동아대학교 대학원 의생명과학과) ;
  • 김혜진 (동아대학교 대학원 의생명과학과) ;
  • 고와 (동아대학교 대학원 의생명과학과) ;
  • 정정한 (동아대학교 BK21 생물자원 실버바이오사업 인력양성단) ;
  • 이진우 (동아대학교 BK21 생물자원 실버바이오사업 인력양성단)
  • Received : 2011.06.10
  • Accepted : 2011.09.05
  • Published : 2011.09.30

Abstract

The optimal concentrations of salts in medium for cell growth and the production of carboxymethylcellulase (CMCase) by a recombinant E. coli JM109/DL-3 were established using two statistical methods: orthogonal array method (OAM) and response surface method (RSM). The analysis of variance (ANOVA) of data based on OAM indicated that $K_2HPO_4$ gave maximum sum of square (S) and percentage contribution (P) for cell growth as well as production of CMCase. The optimal concentrations of $K_2HPO_4$, NaCl, $MgSO_4{\cdot}7H_2O$, and $(NH_4)_2SO_4$ in medium for cell growth extracted by Qualitek-4 (W32b) Software were 10.0, 1.0, 0.2, and 0.6 g/l, respectively, whereas those for the production of CMCase by E. coli JM109/DL-3 were 5.0, 1.0, 0.4, and 0.6 g/l. The analysis of variance (ANOVA) resulting from RSM indicated that a highly significant salt for cell growth was $K_2HPO_4$ ("probe>F" less than 0.0001), whereas $K_2HPO_4$ and $MgSO_4{\cdot}7H_2O$ were significant for the production of CMCase. The optimal concentrations of $K_2HPO_4$, NaCl, $MgSO_4{\cdot}7H_2O$, and $(NH_4)_2SO_4$ for cell growth extracted by Design Expert Software were 7.44, 1.08, 0.22, and 0.88 g/l, respectively, whereas those for production of CMCase were 5.84, 0.69, 0.28, and 0.54 g/l. The optimal concentrations of salts and their influences on cell growth and production of CMCase extracted by OAM were almost the same as those by RSM. Production of CMCase by a recombinant E. coli JM109/DL-3 under optimized concentration of salts was 1.93 times higher than that by Bacillus amyloliquifaciens DL-3.

재조합 균주인 E. coli JM109/DL-3를 사용하여 carboxymethylcellulase를 생산하기 위한 배지의 최적 염 농도를 orthogonal array method (OAM)과 response surface method (RSM) 등과 같은 통계학적인 방법으로 확립하고 그 결과를 비교하였다. OAM에 기초를 한 Qualitek-4 Software를 사용하여 실험을 계획하고, 그 결과를 분석한 결과는 K2HPO4가 균체의 생장 및 carboxymethylcellulase의 생산에 미치는 영향이 가장 크다는 사실을 확인하였다. 균체의 생육에 최적인 $K_2HPO_4$, NaCl, $MgSO_4{\cdot}7H_2O$$(NH_4)_2SO_4$의 농도는 10.0, 1.0, 0.2 및 0.6 g/l이었으나, carboxymethylcellulase의 생산에 최적인 각 염들의 농도는 각각 5.0, 1.0, 0.4 및 0.6 g/l이었다. RSM에 기초를 한 Design-Expert Software를 사용하여 실험을 계획하고, 그 결과를 분석한 결과는 $K_2HPO_4$가 균체의 생장 및 carboxymethylcellulase의 생산에 가장 중요한 인자라는 사실을 확인하였다. 균체의 생장에 최적인 $K_2HPO_4$, NaCl, $MgSO_4{\cdot}7H_2O$$(NH_4)_2SO_4$의 농도는 7.44, 1.08, 0.22 및 0.88 g/l이었으나, carboxymethylcellulase의 생산에 최적인 각 염들의 농도는 각각 5.84, 0.69, 0.28 및 0.54 g/l이었다. 기본적으로 OAM에 기초한 software를 사용하여 얻은 결과는 RSM에 기초한 software를 사용하여 얻은 결과와 유사하였다. 최적 조건에서 재조합 균주 E.coli JM109/DL-3이 생산하는 carboxymethylcellulase의 생산은 B. amyloliquifacience DL-에 비하여 1.92배 증가하였다.

Keywords

References

  1. Bakhtiari, M. R., M. G. Faezi, M. Fallahpour, A. Noohi, N. Moazami, and Z. Amidi. 2006. Medium optimization by orthogonal array designs for urease production by Aspegillus niger PTCC5011. Process Biochem. 41, 547-551. https://doi.org/10.1016/j.procbio.2005.09.002
  2. Ballesteros, M., J. M. Oliva, M. J. Negro, P. Manzanares, and I. Ballesteros. 2004. Ethanol from ligoncelulosic materials by a simultaneous saccharification and fermentation process (SSF) with Kluyveromeces marxianus CECT 10875. Process Biochem. 39, 1843-1848. https://doi.org/10.1016/j.procbio.2003.09.011
  3. Blumer-Schuette, S. E., I. Kataeva, J. Westpheling, M. W. W. Adams, and R. M. Kelly. 2008. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr. Opin. Biotechnol. 19, 210-217. https://doi.org/10.1016/j.copbio.2008.04.007
  4. Cui, J. D. 2010. Optimization of medium for phenylalanine ammonia lyase production in E. coli using response surface method. Kor. J. Chem. Eng. 27, 174-178. https://doi.org/10.1007/s11814-009-0234-3
  5. Gao, W., Y. J. Kim, C. H. Chung, and J. W. Lee. 2010. Optimization of mineral salts in medium for enhanced production of pullulan by Aureobasidium pullulans HP-2001 using an orthogonal array method. Biotechnol. Bioprocess Eng. 15, 837-845. https://doi.org/10.1007/s12257-010-0042-y
  6. Gao, W., C. H. Chung, J. Li, and J. W. Lee. 2011. Application of statistical experimental design for optimization of physiological factors and their influences on production of pullulan by Aureobasidium pullulans HP-2001 using an orthogonal array method. Korean J. Chem. Eng. Doi:10.1007/s11814-011-0107-4.
  7. Golias H, G. J. Dumsday, G. A. Stanley, and N. B. Pamment. 2000. Characteristics of cellulase preparation affecting the simultaneous saccharification and fermentation of cellulose to ethanol. Biotechnol. Lett. 26, 617-621.
  8. Gu, X. B., Z. M. Zheng, H. Q. Yu, J. Wang, F. L. Liang, and R. L. Liu. 2005. Optimization of medium constituents for a novel lipopeptide production by Bacillus subtilis MO-01 by a response surface method. Process Biocehm. 40, 3196-3201. https://doi.org/10.1016/j.procbio.2005.02.011
  9. Hongwen, C., F. Baishan, and H. Zongding. 2005. Optimization of process parameters for key enzymes accumulation of 1,3-propanediol production from Klebsiella pneumoniae. Biochem. Eng. J. 25, 47-53. https://doi.org/10.1016/j.bej.2005.03.011
  10. Jaleel, C. A., P. Manivannan, G. M. A. Lakshmanan, R. Sridharan, and R. Panneerselvam. 2007. NaCl as a physiological modulator of proline metabolism and antioxidant potential in Phyllanthus amarus. Compt. Rend. Biol. 330, 806-813. https://doi.org/10.1016/j.crvi.2007.08.009
  11. Jin, I. H., D. Y. Jing, C. W. Son, S. K. Kim, W. Gao., C. H. Chung, and J. W. Lee. 2011. Enhanced production of heteropolysaccharide- 7 by Beijerinkia indica HS-2001 in repeated batch culture with optimized substitution of culture medium. Biotechnol. Bioprocess Eng. 16, 45-255.
  12. Jo, K. I., Y. J. Lee, B. K. Kim, B. H. Lee, C. H. Chung, S. W. Nam, S. K. Kim, and J. W. Lee. 2008. Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3. Biotechnol. Bioprocess Eng. 13, 182-188. https://doi.org/10.1007/s12257-007-0149-y
  13. Khuri, A. I. and J. A. Cornell. 1987. Response surfaces: Design and analysis. Marcel Dekker, New York, USA.
  14. Kim, B. K., B. H. Lee, Y. J. Lee, I. H. Jin, C. H. Chung, and J. W. Lee. 2009 Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzym. Microb. Technol. 44, 411-416. https://doi.org/10.1016/j.enzmictec.2009.02.005
  15. Lee, B. H., B. K. Kim, Y. J. Lee, C. H. Chung, and J. W. Lee. 2010. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzym. Microb. Technol. 46, 38-42. https://doi.org/10.1016/j.enzmictec.2009.07.009
  16. Lee, N. K., Y. B. Jo, I. H. Jin, C. W. Son, and J. W. Lee. 2009. The effect of potassium phosphate as a pH stabilizer on the production of gellan by Sphingmonas paucibilis NK-2000. J. Life Sci. 19, 1033-1038. https://doi.org/10.5352/JLS.2009.19.8.1033
  17. Lee, Y. J., B. K. Kim, B. H. Lee, K. I. Jo, N. K. Lee, C. H. Chung, Y. C. Lee, and J. W. Lee. 2008. Purification and characterization of cellulase produced by Bacillus amyloliquefaciens DL-3 utilizing rice hull. Bioresource Technol. 99, 378-386. https://doi.org/10.1016/j.biortech.2006.12.013
  18. Sen, R. 1997. Response surface optimization of the critical media components for the production of surfactin. J. Chem. Tech. Biotechnol. 68, 263-270. https://doi.org/10.1002/(SICI)1097-4660(199703)68:3<263::AID-JCTB631>3.0.CO;2-8
  19. Senthikumar, S. R., A. Ashokkumar, K. C. Raj, and P. Cunasekraran. 2005. Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design. Bioresource Technol. 96, 1380-1386. https://doi.org/10.1016/j.biortech.2004.11.005
  20. Seo, H. P., K. I. Jo, C. W. Son, J. K. Yang, C. H. Chung, S. W. Nam, S. K. Kim, and J. W. Lee. 2006. Continuous production of pullulan by Aureobasidium pullulans HP-2001 with feeding of high concentration of sucrose. J. Microbiol. Biotechnol. 16, 374-380.
  21. Shaligram, N. S., S. K. Singh, R. S. Singhal, G. Szakacs, and A. Pandey. 2008. Compactin production in solid-state fermentation using orthogonal array method by Penicillium brevicompactum. Biochem. Eng. J. 41, 295-300. https://doi.org/10.1016/j.bej.2008.05.011
  22. Shokri, D. and G. Emitiazi. 2010. Indol-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by Taguch design. Curr. Microbiol. 61, 217-225. https://doi.org/10.1007/s00284-010-9600-y
  23. Sukumaran, R. K., R. R. Singhania, G. M. Mathew, and A. Pandey. 2009. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew. Energy 34, 421-424. https://doi.org/10.1016/j.renene.2008.05.008
  24. Takashima, S., H. Iikura, A. Nakamura, M. Hidaka, H. Masaki, and T. Uozumi. 1998. Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties. J. Biotechnol. 65, 163-171. https://doi.org/10.1016/S0168-1656(98)00084-4
  25. Tomas-Pejo, E., M. Carcia-Aparicio, M. J. Negr, J. M. Oliva, and M. Ballesteros. 2009. Effect of different cellulase dosage on cell viability and ethanol production by Kluyveromeces marxianus in SSF process. Bioresource Technol. 100, 890-895. https://doi.org/10.1016/j.biortech.2008.07.012
  26. Wei, G. Y., W. Gao, I. H. Jin, S. Y. Yoo, J. H. Lee, Chung CH, and J. W. Lee. 2009. Pretreatment and saccharification of rice hulls for the production of fermentable sugars. Biotechnol. Bioprocess Eng. 14, 828-834. https://doi.org/10.1007/s12257-009-0029-8
  27. Xu, C. P., S. W. Kim, H. J. Hwang, J. W. Choi, and J. W. Yun. 2003. Optimization of submerged culture conditions for mycelial growth and exo-biopolymer production by Paecilomyces tenuips C240. Process Biochem. 38, 1025-1030. https://doi.org/10.1016/S0032-9592(02)00224-8
  28. Yi, J. C., J. C. Sandra, A. B. John, and T. C. Shu. 1999. Production and distribution of endoglucanase, cellobiohydrolase, and $\beta$-glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom. Appl. Environ. Microbiol. 65, 553-559.

Cited by

  1. Characterization of maltotriose production by hydrolyzing of soluble starch with α-amylase from Microbulbifer thermotolerans DAU221 vol.99, pp.9, 2015, https://doi.org/10.1007/s00253-014-6186-5
  2. Enhanced Production of Cellobiase by a Marine Bacterium, Cellulophaga lytica LBH-14, in Pilot-Scaled Bioreactor Using Rice Bran vol.23, pp.4, 2013, https://doi.org/10.5352/JLS.2013.23.4.542
  3. Enhanced production of cellobiase by marine bacterium Cellulophaga lytica LBH-14 from rice bran under optimized conditions involved in dissolved oxygen vol.20, pp.1, 2015, https://doi.org/10.1007/s12257-014-0486-6
  4. Comparison of optimal conditions for mass production of carboxymethylcellulase by Escherichia coli JM109/A-68 with other recombinants in pilot-scale bioreactor vol.22, pp.2, 2017, https://doi.org/10.1007/s12257-017-0035-1
  5. Construction of a recombinant Escherichia coli JM109/A-68 for production of carboxymethylcellulase and comparison of its production with its wild type, Bacillus velezensis A-68 in a pilot-scale bioreactor vol.21, pp.5, 2016, https://doi.org/10.1007/s12257-016-0468-y
  6. Enhanced Production of Carboxymethylcellulase by a Newly Isolated Marine Microorganism Bacillus atrophaeus LBH-18 Using Rice Bran, a Byproduct from the Rice Processing Industry vol.22, pp.10, 2012, https://doi.org/10.5352/JLS.2012.22.10.1295
  7. Enhanced Production of carboxymethylcellulase by a marine bacterium, Bacillus velezensis A-68, by using rice hulls in pilot-scale bioreactor under optimized conditions for dissolved oxygen vol.52, pp.9, 2014, https://doi.org/10.1007/s12275-014-4156-3