DOI QR코드

DOI QR Code

Flavonoid Inhibitors of β-Ketoacyl Acyl Carrier Protein Synthase III against Methicillin-Resistant Staphylococcus aureus

  • Lee, Jee-Young (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Ju-Ho (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Jeong, Ki-Woong (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Eun-Jung (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Yang-Mee (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Received : 2011.05.23
  • Accepted : 2011.06.15
  • Published : 2011.08.20

Abstract

${\beta}$ Ketoacyl acyl carrier protein synthase III (KAS III) initiates fatty acid synthesis in bacteria and is a key target enzyme to overcome the antibiotic resistance problem. In our previous study, we found flavonoid inhibitors of Enterococcus faecalis KAS III and proposed three potent antimicrobial flavonoids against Enterococcus faecalis and Vancomycin-resistant Enterococcus faecalis with MIC values in the range of 128-512 ${\mu}g/mL$ as well as high binding affinities on the order from $10^6$ to $10^7\;M^{-1}$. Using these series of flavonoids, we conducted biological assays as well as docking study to find potent flavonoids inhibitors of Staphylococcus aureus KAS III with specificities against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Here, we propose that naringenin (5,7,4'-trihydroxyflavanone) and eriodictyol (5,7,3',4'-tetrahydroxyflavanone) are potent antimicrobial inhibitors of Staphylococcus aureus KAS III with binding affinity of $3.35{\times}10^5$ and $2.01{\times}10^5\;M^{-1}$, respectively. Since Arg38 in efKAS III is replaced with Met36 in saKAS III, this key difference caused one hydrogen bond missing in saKAS III compared with efKAS III, resulting in slight discrepancy in their binding interactions as well as decrease in binding affinities. 4'-OH and 7-OH of these flavonoids participated in hydrogen bonding interactions with backbone carbonyl of Phe298 and Ser152, respectively. In particular, these flavonoids display potent antimicrobial activities against various MRSA strains in the range of 64 to 128 ${\mu}M$ with good binding affinities.

Keywords

References

  1. Heath, R. J.; White, S. W.; Rock, C. O. Prog. Lipid Res. 2001, 40, 467. https://doi.org/10.1016/S0163-7827(01)00012-1
  2. Lu, J. Z.; Lee, P. J.; Waters, N. C.; Prigge, S. T. Comb. Chem. High Throughput Screen. 2005, 8, 15. https://doi.org/10.2174/1386207053328192
  3. Lu, Y. J.; Zhang, Y. M.; Rock, C. O. Biochem. Cell Biol. 2004, 82, 145. https://doi.org/10.1139/o03-076
  4. Marrakchi, H.; Zhang,Y. M.; Rock, C. O. Biochem. Soc. Trans. 2002, 30, 1050.
  5. Tsay, J. T.; Oh, W.; Larson, T. J.; Jackowski, S.; Rock, C. O. J. Biol. Chem. 1992, 267, 6807.
  6. Christensen, C. E.; Kragelund, B. B.; von Wettstein-Knowles, P.; Henriksen, A. Protein Sci. 2007, 16, 261.
  7. Bylka, W.; Matlawska, I.; Pilewski, N. A. JANA. 2004, 7, 24.
  8. Huycke, M. M.; Sahm, D. F.; Gilmore, M. S. Emerg. Infect. Dis. 1998, 4, 239. https://doi.org/10.3201/eid0402.980211
  9. Narayana, K. R.; Reddy, M. S.; Chaluvadi, M. R.; Krishna, D. R. Indian J. Pharmacol. 2001, 33, 2.
  10. van Acker, F. A.; Hulshof, J. W.; Haenen, G. R.; Menge, W. M.; van der Vijgh, W. J.; Bast, A. Free Radical Biol. Med. 2001, 31, 31. https://doi.org/10.1016/S0891-5849(01)00546-9
  11. Cushin, T. P. T.; Lamb, A. J. Int. J. Antimicrobial Agents 2005, 26, 343. https://doi.org/10.1016/j.ijantimicag.2005.09.002
  12. Puupponen-Pimia, R.; Nohynek, L.; Meier, C.; Kahkonen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K. M. J. Appl. Microbiol. 2001, 90, 494. https://doi.org/10.1046/j.1365-2672.2001.01271.x
  13. Stefani, S.; Goglio A. Int. J. Infect. Dis. 2010, 4, S19.
  14. Jeong, K. W.; Lee, J. Y.; Kim, Y. Bull. Korean Chem. Soc. 2007, 28, 1335. https://doi.org/10.5012/bkcs.2007.28.8.1335
  15. Jeong, K. W.; Lee, J. Y.; Kang, D. I.; Lee, J. U.; Shin, S. Y.; Kim, Y. J. Nat. Prod. 2009, 72, 719. https://doi.org/10.1021/np800698d
  16. Lee, J. Y.; Jeong, K. W.; Lee, J. U.; Kang, D. I.; Kim. Y. Bioorg. Med. Chem. 2009, 17, 1506. https://doi.org/10.1016/j.bmc.2009.01.004
  17. Lee, J. Y.; Jeong, K. W.; Shin, S.; Lee, J. U.; Kim, Y. Bioorg. Med. Chem. 2009, 17, 5408. https://doi.org/10.1016/j.bmc.2009.06.059
  18. Qiu, X.; Choudhry, A. E.; Janson, C. A.; Grooms, M.; Daines, R. A.; Lonsdale, J. T.; Khandekar, S. S. Protein Sci. 2005, 14, 2087. https://doi.org/10.1110/ps.051501605
  19. Gajiwala, K. S.; Margosiak, S.; Lu, J.; Cortez, J.; Su, Y.; Nie, Z.; Appelt, K. FEBS Lett. 2009, 583, 2939. https://doi.org/10.1016/j.febslet.2009.08.001
  20. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. J. Computational Chemistry 1998, 19, 1639. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  21. Noto, T.; Miyakawa, S.; Oishi, H.; Endo, H.; Okazaki, H. J. Antibiot (Tokyo) 1982, 35, 401. https://doi.org/10.7164/antibiotics.35.401
  22. Ertl, P.; Rohde, B.; Selzer, P. J. Med. Chem. 2000, 43, 3714. https://doi.org/10.1021/jm000942e
  23. Wiemer, A. J.; Yu, J. S.; Shull, L. W.; Barney, R. J.; Wasko, B. M.; Lamb, K. M.; Hohl, R. J.; Wiemer, D. F. Bioorg. Med. Chem. 2008, 16, 3652. https://doi.org/10.1016/j.bmc.2008.02.016

Cited by

  1. Binding model for eriodictyol to Jun-N terminal kinase and its anti-inflammatory signaling pathway vol.46, pp.12, 2013, https://doi.org/10.5483/BMBRep.2013.46.12.092
  2. Synthesis of Disulfide‐Bridged N‐Phenyl‐N′‐(alkyl/aryl/heteroaryl)urea Derivatives and Evaluation of Their Antimicrobial Activities vol.16, pp.12, 2011, https://doi.org/10.1002/cbdv.201900461