DOI QR코드

DOI QR Code

Synthesis and Electrochemical Characterization of Silica-Manganese Oxide with a Core-shell Structure and Various Oxidation States

  • Ryu, Seong-Hyeon (Department of Chemistry, University of Ulsan) ;
  • Hwang, Seung-Gi (Department of Chemistry, University of Ulsan) ;
  • Yun, Su-Ryeon (Department of Chemistry, University of Ulsan) ;
  • Cho, Kwon-Koo (i-Cube Center, ITRC for Energy Storage and Conversion, Gyeongsang National University) ;
  • Kim, Ki-Won (i-Cube Center, ITRC for Energy Storage and Conversion, Gyeongsang National University) ;
  • Ryu, Kwang-Sun (Department of Chemistry, University of Ulsan)
  • Received : 2011.04.02
  • Accepted : 2011.06.28
  • Published : 2011.08.20

Abstract

Silica-manganese oxides with a core-shell structure were synthesized via precipitation of manganese oxides on the $SiO_2$ core while varying the concentration of a precipitation agent. Elemental analysis, crystalline property investigation, and morphology observations using low- and high-resolution electron microscopes were applied to the synthesized silica-manganese oxides with the core-shell structure. As the concentration of the precipitating agent increased, the manganese oxide shells around the $SiO_2$ core sequentially appeared as $Mn_3O_4$ particles, $Mn_2O_3+Mn_3O_4$ thin layers, and ${\alpha}-MnO_2$ urchin-like phases. The prepared samples were assembled as electrodes in a supercapacitor with 0.1 M $Na_2SO_4$ electrolyte, and their electrochemical properties were examined using cyclic voltammetry and charge-discharge cycling. The maximum specific capacitance obtained was 197 F $g^{-1}$ for the $SiO_2-MnO_2$ electrode due to the higher electronic conductivity of the $MnO_2$ shell compared to those of the $Mn_2O_3$ and $Mn_3O_4$ phases.

Keywords

References

  1. Conway, B. E. Electrochemical Supercapacitor-Scientific Fundamentals and Technological Application; Kluwer Academic: New York, 1999; pp 29-31.
  2. Conway, B, E. J. Electrochem. Soc. 1991, 138, 1539. https://doi.org/10.1149/1.2085829
  3. Sarangapani, S.; Tilak, B. V.; Chen, C. P. J. Electrochem. Soc. 1996, 143, 3791. https://doi.org/10.1149/1.1837291
  4. Burke, A. J. Power Sources 2000, 91, 37. https://doi.org/10.1016/S0378-7753(00)00485-7
  5. Zheng, J. P.; Jow, T. R. J. Electrochem. Soc. 1995, 142, L6. https://doi.org/10.1149/1.2043984
  6. Zheng, J. P.; Cygan, P. J.; Jow, T. R. J. Electrochem. Soc. 1995, 142, 2699. https://doi.org/10.1149/1.2050077
  7. Devaraj, S.; Munichandraiah, N. J. Electrochem. Soc. 2007, 154, A80. https://doi.org/10.1149/1.2404775
  8. Lee, H. Y.; Manivannan, A.; Goodenough, J. B. C R Acad Sci. 1999, 200, 565.
  9. Lee, H. Y.; Goodenough, J. B. J. Solid State Chem. 1999, 144, 220. https://doi.org/10.1006/jssc.1998.8128
  10. Pang, S. C.; Anderson, M. A.; Chapman, T. W. J. Electrochem. Soc. 2000, 147, 444. https://doi.org/10.1149/1.1393216
  11. Pang, S. C.; Anderson, M. A. J. Mater Res. 2000, 15, 2096. https://doi.org/10.1557/JMR.2000.0302
  12. Chin, S. F.; Pang, S. C.; Anderson, M. A. J. Electrochem. Soc. 2002, 149, A379. https://doi.org/10.1149/1.1453406
  13. Hu, C. C.; Tsou, T. W. Electrochem. Commun. 2002, 4, 105. https://doi.org/10.1016/S1388-2481(01)00285-5
  14. Chang, J. K.; Tsai, W. T. J. Electrochem. Soc. 2003, 150, A1333. https://doi.org/10.1149/1.1605744
  15. Ye, C.; Lin, Z. M.; Hui, S. Z. J. Electrochem. Soc. 2005, 152, A1272. https://doi.org/10.1149/1.1904912
  16. Yuan, A.; Zhang, Q. Electrochem. Commun. 2006, 8, 1173. https://doi.org/10.1016/j.elecom.2006.05.018
  17. Jeong, Y. U.; Manthiram, A. J. Electrochem. Soc. 2002, 149, A379. https://doi.org/10.1149/1.1453406
  18. Toupin, M.; Brousse, T.; Belange, D. Chem. Mater. 2004, 16, 3184. https://doi.org/10.1021/cm049649j
  19. Prasad, K. R.; Miura, N. J. Power Sources 2004, 135, 354. https://doi.org/10.1016/j.jpowsour.2004.04.005
  20. Liu, E.-H.; Ding, R.; Meng, X.-Y.; Tan, S.-T.; Zhou, J. J. Mater. Sci.: Mater Electron 2007, 18, 1179. https://doi.org/10.1007/s10854-007-9369-3
  21. Caruso, R. A.; Antonietti, M. Chem. Mater. 2001, 13, 3272. https://doi.org/10.1021/cm001257z
  22. Caruso, F.; Spasova, M.; Salgueirino-Maceira, V.; Liz-Marzan, L. M. Adv. Mater. 2001, 13, 1090. https://doi.org/10.1002/1521-4095(200107)13:14<1090::AID-ADMA1090>3.0.CO;2-H
  23. Jiang, Z. H.; Liu, C. Y. J. Phys. Chem. B 2003, 107, 12411. https://doi.org/10.1021/jp035060g
  24. Sertchook, H.; Avnir, D. Chem. Mater. 2003, 15, 1690. https://doi.org/10.1021/cm020980h
  25. Mulvaney, P.; Giersig, M.; Ung, T.; Liz-Marzán, L. M. Adv. Mater. 1997, 9, 570. https://doi.org/10.1002/adma.19970090712
  26. Ung, T.; Liz-Marzan, L. M.; Mulvaney, P. Langmuir 1998, 14, 3740. https://doi.org/10.1021/la980047m
  27. Oldenburg, S. J.; Averitt, R. D.; Westcott, S. L.; Halas, N. J. Chem. Phys. Lett. 1998, 288, 243. https://doi.org/10.1016/S0009-2614(98)00277-2
  28. Fleming, M. S.; Mandal, T. K.; Walt, D. R. Chem. Mater. 2001, 13, 2210. https://doi.org/10.1021/cm010168z
  29. Lia, G.; Wanga, Z.; Yua, M.; Quana, Z.; Lin, J. J. Solid State Chem. 2006, 179, 2698. https://doi.org/10.1016/j.jssc.2006.05.019
  30. Zou, H.; Wu, S.; Shen, J. Chem. Rev. 2008, 108, 3893. https://doi.org/10.1021/cr068035q
  31. Subramanian, V.; Zhu, H.; Wei, B. Chem. Phys. Lett. 2008, 453, 242. https://doi.org/10.1016/j.cplett.2008.01.042
  32. Shinomiya, T.; Gupta, V.; Miura, N. Electrochim. Acta 2006, 51, 4412. https://doi.org/10.1016/j.electacta.2005.12.025
  33. Julien, C. M.; Massot, M.; Poinsignon, C. Spectrochim. Acta 2004, 60, 689. https://doi.org/10.1016/S1386-1425(03)00279-8
  34. Subramanian, V.; Zhu, H.; Wei, B. J. Power Sources 2006, 159, 361. https://doi.org/10.1016/j.jpowsour.2006.04.012

Cited by

  1. using Silica Template vol.14, pp.3, 2011, https://doi.org/10.5229/JKES.2011.14.3.184
  2. sphere coated on single-wall carbon nanotubes as supercapacitor electrode for high energy storage applications vol.4, pp.12, 2017, https://doi.org/10.1088/2053-1591/aa9e12
  3. Morphology and composition control of manganese oxide by the pulse reverse electrodeposition technique for high performance supercapacitors vol.1, pp.46, 2011, https://doi.org/10.1039/c3ta12828h
  4. Combination of porous silica monolith and gold thin films for electrode material of supercapacitor vol.2, pp.12, 2015, https://doi.org/10.1088/2053-1591/2/12/125001