DOI QR코드

DOI QR Code

Beryllium(II) Recognition by Allosteric Effects in 1,2-Ethylenedioxybenzene Based Ditopic Receptors

  • Kim, Dong-Wan (Department of Chemistry (BK21) and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Jung-Hwan (Department of Chemistry (BK21) and Research Institute of Natural Science, Gyeongsang National University) ;
  • Hwang, Jae-Young (Research Institute for Green Energy Convergence Technology (RIGET), Gyeongsang National University) ;
  • Choi, Myong-Yong (Department of Chemistry (BK21) and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Jae-Sang (Department of Chemistry (BK21) and Research Institute of Natural Science, Gyeongsang National University)
  • Received : 2011.03.29
  • Accepted : 2011.06.24
  • Published : 2011.08.20

Abstract

Efficient ditopic receptor, uranyl(II) N,N'-(ethylenedioxy)benzenebis(salicylideneimine) (3) for beryllium ion has been obtained upon functionalization of 1,2-ethylenedioxybenzene (1) with a uranyl-salphen (salphen = N,N'-phenylenebis(salicylideneimine)) unit. Binding affinities of the receptor, 3 in AN-DMSO (v/v 95:5) solution have been measured for alkali and alkaline earth metal ions by conductometry comparing 1. The results showed that both monotopic 1 and ditopic receptor 3 were selective for $Be^{2+}$ ions over other cations, while especially 3 that can complex both with cations (coordinated to basic oxygen of ethylenedioxybenzene) and anions (coordinated to the Lewis acidic uranyl center) results in an increase of the stability constants by a factor of $10^{2.42}$ with respect to 1. Furthermore, the $Be^{2+}$-3 interactions are demonstrated by $^1H$ NMR experiments in highly polar solvent medium, DMSO-$d_6$. Higher selectivities were also observed for $Be^{2+}$ when the ditopic receptor, 3 was incorporated into PVC membranes and tested as ion selective electrodes at neutral pH.

Keywords

References

  1. Kavallieratos, K.; Sachleben, R. A.; Van Berkel, G. J.; Moyer, B. A. Chem. Commun. 2000, 187.
  2. Kubik, S. J. Am. Chem. Soc. 1999, 121, 5846. https://doi.org/10.1021/ja983970j
  3. Scheerder, J.; Van Duynhoven, J. P. M.; Engbersen, J. F. J.; Reinhoudt, D. N. Angew. Chem., Int. Ed. 1996, 35, 1090. https://doi.org/10.1002/anie.199610901
  4. Uppadine, L. H.; Redman, J. E.; Drew, M. G. B.; Dent, S. W.; Beer, P. D. Inorg. Chem. 2001, 40, 2860. https://doi.org/10.1021/ic001450v
  5. Cooper, J. B.; Drew, M. G. B.; Beer, P. D. J. Chem. Soc., Dalton Trans. 2000, 2721.
  6. Jamson, C. W. Environ. Health Perspec. 1996, 104, 935. https://doi.org/10.1289/ehp.96104s5935
  7. Vainio, H.; Rice, J. M. J. Occup. Environ. Med. 1997, 39, 203. https://doi.org/10.1097/00043764-199703000-00008
  8. Marcus, Y. Biophys. Chem. 1994, 51, 111. https://doi.org/10.1016/0301-4622(94)00051-4
  9. Ganjali, M. R.; Moghimi, A.; Shamsipur, M. Anal. Chem. 1998, 70, 5759.
  10. Shamsipur, M.; Ganjali, M. R.; Rouhollahi, A.; Moghimi, A. Anal. Chim. Acta 2001, 434, 23. https://doi.org/10.1016/S0003-2670(01)00802-9
  11. Ganjali, M. R.; Ghorbani, M.; Norouzi, P.; Daftari, A.; Faal- Rastegar, M.; Moghimi, A. Sens. Actuators, B 2004, 100, 315. https://doi.org/10.1016/j.snb.2004.01.021
  12. Soleymanpour, A.; Rad, N. A.; Niknam, K. Sens. Actuators, B 2006, 114, 740. https://doi.org/10.1016/j.snb.2005.06.046
  13. Ganjali, M. R.; Rahimi-Nasrabadi, M.; Maddah, B.; Moghimi, A.; Faal-Rastegar, M.; Borhany, S.; Namazian, M. Talanta 2004, 63, 899. https://doi.org/10.1016/j.talanta.2003.12.052
  14. Kim, J. S.; Pike, J. D.; Coucouvanis, D.; Meyerhoff, M. E. Electroanalysis 2000, 12, 1258. https://doi.org/10.1002/1521-4109(200011)12:16<1258::AID-ELAN1258>3.0.CO;2-K
  15. Coucouvanis, D.; Rosa, D. T.; Pike, J. C. R. Chimie 2003, 6, 317. https://doi.org/10.1016/S1631-0748(03)00041-9
  16. Cametti, M.; Nissinen, M.; Cort, A. D.; Rissanen, K.; Mandolini, L. Inorg. Chem. 2006, 45, 6099. https://doi.org/10.1021/ic060251u
  17. Rudkevich, D. M.; Mercer-Chalmers, J. D.; Verboom, W.; Ungaro, R.; De Jong, F.; Reinhoudt, D. N. J. Am. Chem. Soc. 1995, 117, 6124. https://doi.org/10.1021/ja00127a027
  18. Cametti, M.; Nissinen, M.; Cort, A. D.; Mandolini, L.; Rissanen, K. J. Am. Chem. Soc. 2005, 127, 3831. https://doi.org/10.1021/ja042807n
  19. Keizer, T. S.; Sauer, N. N.; McCleskey, T. M. J. Am. Chem. Soc. 2004, 126, 9484. https://doi.org/10.1021/ja047637t
  20. Yamini, Y.; Hassan, J.; Mohandesi, R.; Bahramifar, N. Talanta 2002, 56, 375.
  21. Pileger, P. G.; Ehler, D. S.; Duran, B. L.; Taylor, T. P.; John, K. D.; Keizer, T. S.; McCleskey, T. M.; Burrell, A. K.; Kampf, J. W.; Haase, T.; Rasmussen, P. G.; Karr, J. Inorg. Chem. 2005, 44, 5761. https://doi.org/10.1021/ic050680c
  22. Dye, J. L.; Nicely, V. A. J. Chem. Educ. 1971, 48, 443. https://doi.org/10.1021/ed048p443
  23. Kim, D. W.; Park, K.-W.; Yang, M.-H.; Kim, T. H.; Mahajan, R. K.; Kim, J. S. Talanta 2007, 74, 223. https://doi.org/10.1016/j.talanta.2007.05.055
  24. Moody, G. J.; Oke, R. B.; Thomas, J. D. R. Analyst 1970, 95, 910. https://doi.org/10.1039/an9709500910
  25. Guilbault, G. G.; Durst, R. A.; Frant, M. S.; Freiser, H.; Hansen, E. H.; Light, T. S.; Pungor, E.; Rechnitz, G.; Rice, N. M.; Rohm, T. J.; Simonm, W.; Thomas, J. D. R. Pure Appl. Chem. 1976, 48, 127. https://doi.org/10.1351/pac197648010127
  26. Kim, J. H.; Kang, D. M.; Shin, S. C.; Choi, M. Y.; Kim, J.; Lee, S. S.; Kim, J. S. Anal. Chim. Acta 2008, 614, 85. https://doi.org/10.1016/j.aca.2008.03.008

Cited by

  1. Recommendations for Nomenclature of ION-Selective Electrodes vol.48, pp.1, 2011, https://doi.org/10.1351/pac197648010127