References
- Love, J. C; Estroff, L. A.; Kriebel, J. F.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103. https://doi.org/10.1021/cr0300789
- Schreiber, F. J. Phys.: Condens. Matter 2004, 16, R881. https://doi.org/10.1088/0953-8984/16/28/R01
- Kramer, S.; Fuierer, R. R.; Gorman, C. B. Chem. Rev. 2003, 103, 4367. https://doi.org/10.1021/cr020704m
- Lee, N.-S.; Kim, D.; Kang, H.; Park, D. K.; Han, S. W.; Noh, J. J. Phys. Chem. C 2011, 115, 5868. https://doi.org/10.1021/jp111506v
- Kang, H.; Lee, N.-S.; Ito, E.; Hara, M.; Noh, J. Langmuir 2010, 26, 2983. https://doi.org/10.1021/la903952c
- Kang, H.; Kim, Y.; Hara, M.; Noh, J. Ultramicroscopy 2010, 110, 666. https://doi.org/10.1016/j.ultramic.2010.02.029
- Kang, H.; Park, T.; Choi, I.; Lee, Y.; Ito, E.; Hara, M.; Noh, J. Ultramicroscopy 2009, 109, 1011. https://doi.org/10.1016/j.ultramic.2009.03.036
- Noh, J.; Kato, H. S.; Kawai, M.; Hara, M. J. Phys. Chem. B 2006, 110, 2793. https://doi.org/10.1021/jp055538b
- Noh, J.; Hara, M. Langmuir 2002, 18, 1953. https://doi.org/10.1021/la010803f
- Li, F.; Tang, L.; Zhou, W.; Guo, Q. Langmuir 2010, 26, 9484. https://doi.org/10.1021/la1000254
- Kwon, S.; Choi, Y.; Choi, J.; Kang, Y.; Chung, H.; Noh, J. Ultramicroscopy 2008, 108, 1311. https://doi.org/10.1016/j.ultramic.2008.04.035
- Yang, G.; Liu, G.-Y. J. Phys. Chem. B 2003, 107, 8746.
- Kang, H.; Kim, Y.; Park, T.; Park, J. B.; Ito, E.; Hara, M.; Noh, J. Bull. Korean Chem. Soc. 2011, 32, 1253. https://doi.org/10.5012/bkcs.2011.32.4.1253
- Poirier, G. E. Langmuir 1999, 15, 1167. https://doi.org/10.1021/la981374x
- Murphy, K. L.; Tysoe, W. T.; Bennett, D. W. Langmuir 2004, 20, 1732. https://doi.org/10.1021/la030293k
- Yoo, H.; Choi, J.; Wang, G.; Kim, T.-W.; Noh, J.; Lee, T. J. Nanosci. Nanotech. 2009, 9, 7012.
- Nakamura, T.; Miyamae, T.; Yoshimura, D.; Kobayashi, N.; Nozoye, H.; Matsumoto, M. Langmuir 2005, 21, 5026. https://doi.org/10.1021/la047373o
- Nakano, K.; Sato, T.; Tazaki, M.; Takagi, M. Langmuir 2000, 16, 2225. https://doi.org/10.1021/la990688x
- Han, S. W.; Kim, K. J. Colloid interface Sci. 2001, 240, 492. https://doi.org/10.1006/jcis.2001.7702
- Han, S. W.; Lee, S. J.; Kim, K. Langmuir 2001, 17, 6981. https://doi.org/10.1021/la010464q
- Dishner, M. H.; Hemminger, J. C.; Feher, F. J. Langmuir 1997, 13, 4788. https://doi.org/10.1021/la970397t
- Azzam, W. Appl. Surf. Sci. 2010, 256, 2299.
- Bashir, A.; Kafer, D.; Muller, J.; Woll, C.; Terfort, A.; Witte, G. Angew. Chem. Int. Ed. 2008, 47, 5250. https://doi.org/10.1002/anie.200800883
- Nakano, K.; Sato, T.; Tajaki, M.; Tagaki, M. Langmuir 2000, 16, 2225. https://doi.org/10.1021/la990688x
- Monnel, J. D.; Stapleton, J. J.; Jackiw, J. J.; Dunbar, T.; Reinerth, T.; Dirk, S. M.; Tour, J. M.; Allara, D. L.; Weiss, P. S. J. Phys. Chem. B 2004, 108, 9834.
- Choi, J.; Lee, Y.; Kang, H.; Han, J. W.; Noh, J. Bull. Korean Chem. Soc. 2008, 29, 1229. https://doi.org/10.5012/bkcs.2008.29.6.1229
- Shaporenko, A.; Ulman, A.; Terfort, A.; Zharnikov, M. J. Phys. Chem. B 2005, 109, 3898. https://doi.org/10.1021/jp045052f
- Gladysz, J. A.; Hornby, J. L.; Garbe, J. E. J. Org. Chem. 1978, 43, 1204. https://doi.org/10.1021/jo00400a040
- Choi, Y.; Jeong, Y.; Chung, H.; Ito, E.; Hara, M.; Noh, J. Langmuir 2008, 24, 91. https://doi.org/10.1021/la701302g
- Poirier, G. E. Chem. Rev. 1997, 97, 1117. https://doi.org/10.1021/cr960074m
- Riposan, A.; Liu, G.-Y. J. Phys. Chem. B 2006, 110, 23926. https://doi.org/10.1021/jp063774w
- Camillone, N.; Leung, T. Y. B.; Schwartz, P.; Eisenberger, P.; Scoles, G. Langmuir 1996, 12, 2737. https://doi.org/10.1021/la951097j
- Noh, J.; Hara, M. RIKEN Review 2001, 38, 49.
- Vericat, C.; Vela, M. E.; Benitez, G.; Carro, P.; Salvarezza, R. C. Chem. Soc. Rev. 2010, 39, 1805. https://doi.org/10.1039/b907301a
- Noh, J. Hara, M. Langmuir 2001, 17, 7280. https://doi.org/10.1021/la0100441
Cited by
- From the bottom up: dimensional control and characterization in molecular monolayers vol.42, pp.7, 2013, https://doi.org/10.1039/C2CS35365B
- Surface Structure, Adsorption, and Thermal Desorption Behaviors of Methaneselenolate Monolayers on Au(111) from Dimethyl Diselenides vol.118, pp.16, 2014, https://doi.org/10.1021/jp409531w
- Exchange Reactions between Alkanethiolates and Alkaneselenols on Au{111} vol.136, pp.22, 2014, https://doi.org/10.1021/ja503432f
- Self‐Assembled Selenium Monolayers: From Nanotechnology to Materials Science and Adaptive Catalysis vol.19, pp.52, 2011, https://doi.org/10.1002/chem.201302115
- Importance of Long-Term Storage for Fluorine-Substituted Aromatic Self-Assembled Monolayers by the Example of 4-Fluorobenzene-1-Thiolate Films on Au(111) vol.123, pp.7, 2011, https://doi.org/10.1021/acs.jpcc.8b12030
- Formation and Surface Structures of Highly Ordered Self-Assembled Monolayers of Alkyl Selenocyanates on Au(111) via Ambient-Pressure Vapor Deposition vol.124, pp.49, 2011, https://doi.org/10.1021/acs.jpcc.0c07401
- Formation and Surface Structures of Highly Ordered Self-Assembled Monolayers of Alkyl Selenocyanates on Au(111) via Ambient-Pressure Vapor Deposition vol.124, pp.49, 2011, https://doi.org/10.1021/acs.jpcc.0c07401
- Formation and superlattice of long-range and highly ordered alicyclic selenolate monolayers on Au(1 1 1) studied by scanning tunneling microscopy vol.572, pp.None, 2011, https://doi.org/10.1016/j.apsusc.2021.151454