DOI QR코드

DOI QR Code

Phase Transition of Octaneselenolate Self-assembled Monolayers on Au(111) Studied by Scanning Tunneling Microscopy

  • Choi, Jung-Seok (Department of Chemistry and Research Institute for Natural Sciences, Hanyang University) ;
  • Kang, Hun-Gu (Department of Chemistry and Research Institute for Natural Sciences, Hanyang University) ;
  • Ito, Eisuke (Flucto-order Functions Research Team, RIKEN-HYU Collaboration Center, RIKEN) ;
  • Hara, Masahiko (Flucto-order Functions Research Team, RIKEN-HYU Collaboration Center, RIKEN) ;
  • Noh, Jae-Geun (Department of Chemistry and Research Institute for Natural Sciences, Hanyang University)
  • Received : 2011.05.22
  • Accepted : 2011.06.20
  • Published : 2011.08.20

Abstract

We investigated the surface structure and wetting behavior of octaneselenolate self-assembled monolayers (SAMs) on Au(111) formed in a 50 ${\mu}M$ ethanol solution according to immersion time, using scanning tunneling microscopy (STM) and an automatic contact angle (CA) goniometer. Closely-packed, well-ordered alkanethiol SAMs would form as the immersion time increased; unexpectedly, however, we observed the structural transition of octaneselenolate SAMs from a molecular row phase with a long-range order to a disordered phase with a high density of vacancy islands (VIs). Molecularly resolved STM imaging revealed that the missing-row ordered phase of the SAMs could be assigned as a $(6{\times}{\surd}3)R30^{\circ}$ superlattice containing three molecules in the rectangular unit cell. In addition, CA measurements showed that the structural order and defect density of VIs are closely related to the wetting behaviors of octaneselenolate SAMs on gold. In this study, we clearly demonstrate that interactions between the headgroups and gold surfaces play an important role in determining the physical properties and surface structure of SAMs.

Keywords

References

  1. Love, J. C; Estroff, L. A.; Kriebel, J. F.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103. https://doi.org/10.1021/cr0300789
  2. Schreiber, F. J. Phys.: Condens. Matter 2004, 16, R881. https://doi.org/10.1088/0953-8984/16/28/R01
  3. Kramer, S.; Fuierer, R. R.; Gorman, C. B. Chem. Rev. 2003, 103, 4367. https://doi.org/10.1021/cr020704m
  4. Lee, N.-S.; Kim, D.; Kang, H.; Park, D. K.; Han, S. W.; Noh, J. J. Phys. Chem. C 2011, 115, 5868. https://doi.org/10.1021/jp111506v
  5. Kang, H.; Lee, N.-S.; Ito, E.; Hara, M.; Noh, J. Langmuir 2010, 26, 2983. https://doi.org/10.1021/la903952c
  6. Kang, H.; Kim, Y.; Hara, M.; Noh, J. Ultramicroscopy 2010, 110, 666. https://doi.org/10.1016/j.ultramic.2010.02.029
  7. Kang, H.; Park, T.; Choi, I.; Lee, Y.; Ito, E.; Hara, M.; Noh, J. Ultramicroscopy 2009, 109, 1011. https://doi.org/10.1016/j.ultramic.2009.03.036
  8. Noh, J.; Kato, H. S.; Kawai, M.; Hara, M. J. Phys. Chem. B 2006, 110, 2793. https://doi.org/10.1021/jp055538b
  9. Noh, J.; Hara, M. Langmuir 2002, 18, 1953. https://doi.org/10.1021/la010803f
  10. Li, F.; Tang, L.; Zhou, W.; Guo, Q. Langmuir 2010, 26, 9484. https://doi.org/10.1021/la1000254
  11. Kwon, S.; Choi, Y.; Choi, J.; Kang, Y.; Chung, H.; Noh, J. Ultramicroscopy 2008, 108, 1311. https://doi.org/10.1016/j.ultramic.2008.04.035
  12. Yang, G.; Liu, G.-Y. J. Phys. Chem. B 2003, 107, 8746.
  13. Kang, H.; Kim, Y.; Park, T.; Park, J. B.; Ito, E.; Hara, M.; Noh, J. Bull. Korean Chem. Soc. 2011, 32, 1253. https://doi.org/10.5012/bkcs.2011.32.4.1253
  14. Poirier, G. E. Langmuir 1999, 15, 1167. https://doi.org/10.1021/la981374x
  15. Murphy, K. L.; Tysoe, W. T.; Bennett, D. W. Langmuir 2004, 20, 1732. https://doi.org/10.1021/la030293k
  16. Yoo, H.; Choi, J.; Wang, G.; Kim, T.-W.; Noh, J.; Lee, T. J. Nanosci. Nanotech. 2009, 9, 7012.
  17. Nakamura, T.; Miyamae, T.; Yoshimura, D.; Kobayashi, N.; Nozoye, H.; Matsumoto, M. Langmuir 2005, 21, 5026. https://doi.org/10.1021/la047373o
  18. Nakano, K.; Sato, T.; Tazaki, M.; Takagi, M. Langmuir 2000, 16, 2225. https://doi.org/10.1021/la990688x
  19. Han, S. W.; Kim, K. J. Colloid interface Sci. 2001, 240, 492. https://doi.org/10.1006/jcis.2001.7702
  20. Han, S. W.; Lee, S. J.; Kim, K. Langmuir 2001, 17, 6981. https://doi.org/10.1021/la010464q
  21. Dishner, M. H.; Hemminger, J. C.; Feher, F. J. Langmuir 1997, 13, 4788. https://doi.org/10.1021/la970397t
  22. Azzam, W. Appl. Surf. Sci. 2010, 256, 2299.
  23. Bashir, A.; Kafer, D.; Muller, J.; Woll, C.; Terfort, A.; Witte, G. Angew. Chem. Int. Ed. 2008, 47, 5250. https://doi.org/10.1002/anie.200800883
  24. Nakano, K.; Sato, T.; Tajaki, M.; Tagaki, M. Langmuir 2000, 16, 2225. https://doi.org/10.1021/la990688x
  25. Monnel, J. D.; Stapleton, J. J.; Jackiw, J. J.; Dunbar, T.; Reinerth, T.; Dirk, S. M.; Tour, J. M.; Allara, D. L.; Weiss, P. S. J. Phys. Chem. B 2004, 108, 9834.
  26. Choi, J.; Lee, Y.; Kang, H.; Han, J. W.; Noh, J. Bull. Korean Chem. Soc. 2008, 29, 1229. https://doi.org/10.5012/bkcs.2008.29.6.1229
  27. Shaporenko, A.; Ulman, A.; Terfort, A.; Zharnikov, M. J. Phys. Chem. B 2005, 109, 3898. https://doi.org/10.1021/jp045052f
  28. Gladysz, J. A.; Hornby, J. L.; Garbe, J. E. J. Org. Chem. 1978, 43, 1204. https://doi.org/10.1021/jo00400a040
  29. Choi, Y.; Jeong, Y.; Chung, H.; Ito, E.; Hara, M.; Noh, J. Langmuir 2008, 24, 91. https://doi.org/10.1021/la701302g
  30. Poirier, G. E. Chem. Rev. 1997, 97, 1117. https://doi.org/10.1021/cr960074m
  31. Riposan, A.; Liu, G.-Y. J. Phys. Chem. B 2006, 110, 23926. https://doi.org/10.1021/jp063774w
  32. Camillone, N.; Leung, T. Y. B.; Schwartz, P.; Eisenberger, P.; Scoles, G. Langmuir 1996, 12, 2737. https://doi.org/10.1021/la951097j
  33. Noh, J.; Hara, M. RIKEN Review 2001, 38, 49.
  34. Vericat, C.; Vela, M. E.; Benitez, G.; Carro, P.; Salvarezza, R. C. Chem. Soc. Rev. 2010, 39, 1805. https://doi.org/10.1039/b907301a
  35. Noh, J. Hara, M. Langmuir 2001, 17, 7280. https://doi.org/10.1021/la0100441

Cited by

  1. From the bottom up: dimensional control and characterization in molecular monolayers vol.42, pp.7, 2013, https://doi.org/10.1039/C2CS35365B
  2. Surface Structure, Adsorption, and Thermal Desorption Behaviors of Methaneselenolate Monolayers on Au(111) from Dimethyl Diselenides vol.118, pp.16, 2014, https://doi.org/10.1021/jp409531w
  3. Exchange Reactions between Alkanethiolates and Alkaneselenols on Au{111} vol.136, pp.22, 2014, https://doi.org/10.1021/ja503432f
  4. Self‐Assembled Selenium Monolayers: From Nanotechnology to Materials Science and Adaptive Catalysis vol.19, pp.52, 2011, https://doi.org/10.1002/chem.201302115
  5. Importance of Long-Term Storage for Fluorine-Substituted Aromatic Self-Assembled Monolayers by the Example of 4-Fluorobenzene-1-Thiolate Films on Au(111) vol.123, pp.7, 2011, https://doi.org/10.1021/acs.jpcc.8b12030
  6. Formation and Surface Structures of Highly Ordered Self-Assembled Monolayers of Alkyl Selenocyanates on Au(111) via Ambient-Pressure Vapor Deposition vol.124, pp.49, 2011, https://doi.org/10.1021/acs.jpcc.0c07401
  7. Formation and Surface Structures of Highly Ordered Self-Assembled Monolayers of Alkyl Selenocyanates on Au(111) via Ambient-Pressure Vapor Deposition vol.124, pp.49, 2011, https://doi.org/10.1021/acs.jpcc.0c07401
  8. Formation and superlattice of long-range and highly ordered alicyclic selenolate monolayers on Au(1 1 1) studied by scanning tunneling microscopy vol.572, pp.None, 2011, https://doi.org/10.1016/j.apsusc.2021.151454