DOI QR코드

DOI QR Code

Analogues of Hybrid Antimicrobial Peptide, CAMA-P2, Designed with Improved Antimicrobial and Synergistic Activities

  • Jeong, Ki-Woong (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Shin, So-Young (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Jin-Kyoung (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Yang-Mee (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Received : 2011.05.16
  • Accepted : 2011.06.15
  • Published : 2011.08.20

Abstract

We have designed a 20-residue hybrid peptide CA(1-8)-MA(1-12) (CAMA) incorporating residues 1-8 of cecropin A (CA) and residues 1-12 of magainin 2 (MA) with high bacterial cell selectivity. CAMA-P2 is an ${\alpha}$-helical antimicrobial peptide designed from a CAMA hybrid peptide and substitution of Gly-Ile-Gly hinge sequence of CAMA to Pro influences the flexibility at central part of CAMA. Based on structure-activity relationships of CAMA peptides, to investigate the effects of the total positive charges on antimicrobial activity of CAMA-P2, the $Ser^{14}{\rightarrow}$Lys analogue (CAMA-syn1) was synthesized. The role of tryptophan at C-terminal ${\alpha}$-helix on its antimicrobial activity as well as synergistic activity was also investigated using $Ser^{14}{\rightarrow}$Lys/$Phe^{18}{\rightarrow}$Trp analogue (CAMA-syn2). Also, we designed CAMA-syn3 by substitution of $Lys^{16}$ located opposite side of substituted $Lys^{14}$ of CAMA-syn1 with Leu residue, resulting in increase of hydrophobicity and amphipathicity of the peptide. All of CAMA-syn analogues showed good antimicrobial activities similar to those of CAMA and CAMA-P2. The CAMA-syn1 and CAMA-syn2 showed low hemolytic activity and cytotoxicity against human keratinocyte Haca-T cells while CAMA-syn3 showed hemolytic activity and cytotoxicity at its MIC value. We then investigated their abilities to act synergistically in combination with the antimicrobial flavonoids and synthetic compounds screened in our laboratory. The results showed that all peptides exhibited synergistic effects with dihydrobinetin, while only CAMA-syn2 exhibited synergistic effects with YKAs3001 against both S. aureus and MRSA, suggesting that Trp residue at C-terminus of CAMA-syn2 may facilitate the polar antibiotic flavonoids and synthetic compounds to permeabilize the membrane. This study will be useful for the development of new antibiotic peptides with potent antimicrobial and synergistic activity but without cytotoxicity.

Keywords

References

  1. Bevins, C. L.; Zasloff, M. Annu. Rev. Biochem. 1990, 59, 395. https://doi.org/10.1146/annurev.bi.59.070190.002143
  2. Hancock, R. E.; Rozek, A. FEMS Microbiol. Lett. 2002, 206, 143. https://doi.org/10.1111/j.1574-6968.2002.tb11000.x
  3. Boman, H. G. Annu. Rev. Immunol. 1995, 13, 61. https://doi.org/10.1146/annurev.iy.13.040195.000425
  4. Maloy, W. L.; Kari, U. P. Biopolymers (Pept. Sci.) 1995, 37, 105. https://doi.org/10.1002/bip.360370206
  5. Hancock, R. E. Lancet. 1997, 349, 418. https://doi.org/10.1016/S0140-6736(97)80051-7
  6. Brogden, K. A. Nature Rev. Microbiol. 2005, 3, 235.
  7. Andreu, D.; Rivas, L. Biopolymers (Pept. Sci.) 1998, 47, 415. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<415::AID-BIP2>3.0.CO;2-D
  8. Oren, Z.; Shai, Y. Biopolymers (Pept. Sci.) 1998, 47, 451. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F
  9. Miyasaki, K.; Lehrer, R. I. Int. J. Antimicrob. Agents 1998, 9, 269. https://doi.org/10.1016/S0924-8579(98)00006-5
  10. Lehrer, R. I.; Ganz, T. Curr. Opin. in Immunol. 1999, 11, 23. https://doi.org/10.1016/S0952-7915(99)80005-3
  11. Oren, Z.; Shai, Y. Biopolymers 1998, 47, 451. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F
  12. Hancock, R. E.; Chapple, D. Antimicrob. Agents Chemother. 1999, 43, 1317.
  13. Miyasaki, K.; Lehrer, R. I. Int. J. Antimicrob. Agents 1998, 9, 269. https://doi.org/10.1016/S0924-8579(98)00006-5
  14. Lehrer, R. I.; Ganz, T. Curr. Opin. in Immunol. 1999, 11, 23. https://doi.org/10.1016/S0952-7915(99)80005-3
  15. Zasloff, M. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 5449. https://doi.org/10.1073/pnas.84.15.5449
  16. Steiner, H.; Hultmark, D.; Engstrom, A.; Bennich, H.; Boman, H. G. Nature 1981, 292, 246. https://doi.org/10.1038/292246a0
  17. Lee, J. Y.; Boman, A.; Sun, C.; Andersson, M.; Jornvall, H.; Mutt, V.; Boman, H. G. Proc. Natl. Acad. Sci. USA 1989, 86, 9195.
  18. Shin, S. Y.; Lee, M. K.; Kim, K. L.; Hahm, K. S. J. Peptide Res. 1997, 50, 279.
  19. Shin, S. Y.; Kang, J. H.; Lee, M. K.; Kim, S. Y.; Kim, Y.; Hahm, K. S. Biochem. Mol. Biol. Int. 1998, 44, 1119.
  20. Shin, S. Y.; Kang, J. H.; Hahm, K. S. J. Peptide Res. 1999, 53, 82. https://doi.org/10.1111/j.1399-3011.1999.tb01620.x
  21. Oh, D.; Shin, S. Y.; Kang, J. H.; Hahm, K. S.; Kim, Y. J. Pept. Res. 1999, 53, 578. https://doi.org/10.1034/j.1399-3011.1999.00067.x
  22. Oh, D.; Shin, S. Y.; Lee, S.; Kang, J. H.; Kim, S. D.; Ryu, P. D.; Hahm, K. S.; Kim, Y. Biochemistry 2000, 39, 11855. https://doi.org/10.1021/bi000453g
  23. Shin, S. Y.; Yang, S. T.; Park, E. J.; Eom, S. H.; Song, W. K.; Kim, Y.; Hahm, K. S.; Kim, J. I. Biochem. Biophys. Res. Commun. 2002, 290, 558. https://doi.org/10.1006/bbrc.2001.6234
  24. Park. Y.; Park, S. N.; Park, S. C.; Shin, S. O.; Kim, J. Y.; Kang, S. J.; Kim, M. H.; Jeong, C. Y.; Hahm, K. S. Biochim. Biophys. Acta 2006, 1764, 24. https://doi.org/10.1016/j.bbapap.2005.10.019
  25. Giacometti, A.; Cirioni, O.; Barchiesi, F.; Fortuna, M.; Scalise, G. J. Antimicrob. Chemother. 1999, 44, 642.
  26. Giacometti, A.; Cirioni, O.; Del Prete, M. S.; Paggi, A. M.; D'Errico, M. M.; Scalise, G. Peptides 2000, 21, 1155. https://doi.org/10.1016/S0196-9781(00)00254-0
  27. Graham, S.; Coote, P. J. J. Antimicrob. Chemother. 2007, 59, 759. https://doi.org/10.1093/jac/dkl539
  28. Glacometti, A.; Cirioni, O.; Scalise, G. Antimicrob. Agents Chemother. 2000, 44, 1716. https://doi.org/10.1128/AAC.44.6.1716-1719.2000
  29. Shin, S. Y.; Yang, S. T. Park, E. J.; Kim, J. I. Biochem. Biophys. Res. Commun. 2002, 290, 558. https://doi.org/10.1006/bbrc.2001.6234
  30. Yeo, I. Y.; Koo, B. K.; Oh, E. S.; Han, I. O.; Lee, W. Bull. Korean Chem. Soc. 2008, 29, 1013. https://doi.org/10.5012/bkcs.2008.29.5.1013
  31. Bang, J. K.; Nan, Y. H.; Lee, E. K.; Shin, S. Y. Bull. Korean Chem. Soc. 2010, 31, 2509. https://doi.org/10.5012/bkcs.2010.31.9.2509
  32. Lee, Y. M.; Dang, H. T.; Hong, J.; Lee, C. O.; Bae, K. S.; Kim, D. K.; Jung, J. H. Bull. Korean Chem. Soc. 2010, 31, 205. https://doi.org/10.5012/bkcs.2010.31.01.205
  33. Scudiero, D. A.; Shoemaker, R. H.; Paull, K. D.; Monks, A.; Tierney, S.; Nofziger, T. H.; Currens, M. J.; Seniff, D.; Boyd, M. R. Cancer Res. 1988, 48, 482733.
  34. Klastersky, J.; Cappel, R.; Daneau, D. Antimicrob. Agents Chemother. 1972, 2, 470. https://doi.org/10.1128/AAC.2.6.470
  35. Eliopoulos, G. M.; Moellering, R. C. Antimicrobial Combinations; Williams and Wilkins: Baltimore, MD, 1996; pp 432-492.
  36. White, R. L.; Burgess, D. S.; Manduru, M. Bosso, J. A. Antimicrob. Agents Chemother. 1996, 40, 1914.
  37. Lee, S. A.; Kim, Y. K.; Lim, S. S.; Zhu, L. W.; Ko, H.; Shin, S. Y.; Hahm, K. S.; Kim, Y. Biochemistry 2007, 46, 3653. https://doi.org/10.1021/bi062233u
  38. Jeong, K. W.; Lee, J. Y.; Kang, D. I.; Lee, J. U.; Shim, S. Y.; Kim, Y. J. Nat. Prod. 2009, 72, 719. https://doi.org/10.1021/np800698d
  39. Lee, J. Y.; Jeong, K. W.; Lee, J. U.; Kang, D. I.; Kim, Y. Bioorg. Med. Chem. 2009, 17, 1506. https://doi.org/10.1016/j.bmc.2009.01.004
  40. Jeong, K. W.; Shin, S.; Kim, J. K.; Kim, Y. Bull. Korean Chem. Soc. 2009, 30, 1839. https://doi.org/10.5012/bkcs.2009.30.8.1839
  41. Odds, F. C. J. Antimicrob. Chemother. 2003, 52, 1. https://doi.org/10.1093/jac/dkg301
  42. Pag, U.; Oedenkoven, M.; Papo, N.; Oren, Z.; Shai, Y.; Sahl, H. G. J. Antimicrob. Chemother. 2004, 53, 230. https://doi.org/10.1093/jac/dkh083
  43. Jesen, B. F.; Refsgaardb, H. H. F.; Broc, R.; Brockhoff, P. B. QSAR Comb. Sci. 2005, 24, 449. https://doi.org/10.1002/qsar.200430928
  44. Veber D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. J. Med. Chem. 2002, 45, 2615. https://doi.org/10.1021/jm020017n
  45. Ertl, P.; Rohde, B.; Selzer, P. J. Med. Chem. 2000, 43, 3714. https://doi.org/10.1021/jm000942e
  46. Wiemer, A. J.; Yu, J. S.; Shull, L. W.; Barney, R. J.; Wasko, B. M.; Lamb, K. M.; Hohl, R. J.; Wiemer, D. F. Bioorg. Med. Chem. 2008, 16, 3652. https://doi.org/10.1016/j.bmc.2008.02.016
  47. Irwin, J. J.; Shoichet, B. K. J. Chem. Inf. Model. 2005, 45, 177. https://doi.org/10.1021/ci049714+
  48. Tossi, A.; Sandri, L.; Giangaspero, A. Peptides; Ettore, B., Carlo, P., Eds.; Edizioni Ziino: Napoli, Italy. 2002; pp 416-417.

Cited by

  1. 9-Meric Peptide Analogs of Defensin-like Antimicrobial Peptide Coprisin with Potent Antibacterial Activities with Bacterial Sell Selectivites vol.35, pp.9, 2011, https://doi.org/10.5012/bkcs.2014.35.9.2809