DOI QR코드

DOI QR Code

Study on the Dominant Film-Forming Site Among Components of Li(Ni1/3Co1/3Mn1/3)O2 Cathode in Li-ion Batteries

  • Kim, Ke-Tack (Department of Chemistry, Sangmyung University) ;
  • Kam, Dae-woong (Battery Research Center, Korea Electrotechnology Research Institute) ;
  • Nguyen, Cao Cuong (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Song, Seung-Wan (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Kostecki, Robert (Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory)
  • Received : 2011.04.20
  • Accepted : 2011.06.17
  • Published : 2011.08.20

Abstract

Surface film formation on $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$ cathodes upon oxidation of electrolyte during electrochemical cycling was investigated. Information on the important factors for film formation on the cathode can facilitate the design of additives that improve the properties of the cathode. Pyrazole is added to the electrolyte because it is readily oxidized to form a surface film on the cathode. The results of differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR) showed that the active material played a dominant role in the interfacial film formation with the electrolyte. Carbon black played a negligible role in the surface film formation.

Keywords

References

  1. Xiao, L.; Ai, X.; Cao, Y.; Yang, Y. Electrochim. Acta 2004, 49, 4189. https://doi.org/10.1016/j.electacta.2004.04.013
  2. Abe, T.; Takaya, T.; Yoshitake, H.; Ushigoe, Y.; Yoshio, M.; Wang, H. Electrochem. Solid-State Lett. 2004, 7, A462. https://doi.org/10.1149/1.1809557
  3. Cho, Y. H.; Kim, K.; Ahn, S.; Liu, H. K. J. Power Sources 2011, 196, 1483. https://doi.org/10.1016/j.jpowsour.2010.08.085
  4. Zhang, H. P.; Xia, Q.; Wang, B.; Yang, L. C.; Wu, Y. P.; Sun, D. L.; Gan, C. L.; Luo, H. J.; Bebeda, A. W.; van Ree, T. Electrochem. Commun. 2009, 11, 526. https://doi.org/10.1016/j.elecom.2008.11.050
  5. Kim, K.; Ahn, S.; Kim, H. S.; Liu, H. K. Electrochim. Acta 2009, 54, 2259. https://doi.org/10.1016/j.electacta.2008.10.043
  6. Song, S.-W.; Zhuang, G. V.; Ross, P. N. J. Electrochem. Soc. 2004, 151, A1162. https://doi.org/10.1149/1.1763771
  7. Aurbach, D. J. Power Sources 2000, 89, 206. https://doi.org/10.1016/S0378-7753(00)00431-6
  8. Meyer, B. M.; Leifer, N.; Sakamoto, S.; Greenbaum, S. G.; Grey, C. P. Electrochem. Solid-State Lett. 2005, 8, A145. https://doi.org/10.1149/1.1854117
  9. Komaba, S.; Itabashi, T.; Ohtsuka, T.; Groult, H.; Kumagai, N.; Kaplan, B.; Yashiro, H. J. Electrochem. Soc. 2005, 152.
  10. Kam, D.; Kim, K.; Kim, H.-S.; Liu, H. K. Electrochem. Commun. 2009, 11, 1657. https://doi.org/10.1016/j.elecom.2009.06.020
  11. Kerlau, M.; Kostecki, R. J. Electrochem. Soc. 2006, 153, A1644. https://doi.org/10.1149/1.2213568
  12. Peres, J. P.; Perton, F.; Audry, C.; Biensan, P.; de Guibert, A.; Blanc, G.; Broussely, M. J. Power Sources 2001, 97-98, 702. https://doi.org/10.1016/S0378-7753(01)00731-5
  13. Baba, Y.; Okada, S.; Yamaki, J.-I. Solid State Ionics 2002, 148, 311.
  14. Nazri, G.-A.; Pistoia, G. Lithium Batteries: Science and Technology; Chapter 17, Kluwer Academic Publications: 2004.
  15. Julien, C. Solid State Ionics 2000, 136-137, 887. https://doi.org/10.1016/S0167-2738(00)00503-8
  16. Matsumoto, K.; Kuzuo, R.; Takeya, K.; Yamanaka, A. J. Power Sources 1999, 81, 558. https://doi.org/10.1016/S0378-7753(99)00216-5
  17. Noh, M.; Lee, Y.; Cho, J. J. Electrochem. Soc. 2006, 153, A935. https://doi.org/10.1149/1.2186041
  18. Zhuang, G. V.; Ross, P. N. Electrochem. Solid-State Lett. 2003, 6, A136. https://doi.org/10.1149/1.1575594
  19. Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy, 3rd ed.; Academic Press: New York, 1990.
  20. Socrates, G. Infrared Characteristic Group Frequencies, Tables and Charts, 2nd ed.; John Wiley & Sons: New York, 1994.
  21. Kanamura, K.; Umegaki, T.; Ohashi, M.; Toriyama, S.; Shiraishi, S.; Takehara, Z. Electrochim. Acta 2001, 47, 433. https://doi.org/10.1016/S0013-4686(01)00736-8
  22. Yabuuchi, N.; Makimura, Y.; Ohzuku, T. J. Electrochem. Soc. 2007, 154, A314. https://doi.org/10.1149/1.2455585
  23. Yoon, W.-S.; Chung, K. Y.; McBreen, J.; Yang, X.-Q. Electrochem. Commun. 2006, 8, 1257. https://doi.org/10.1016/j.elecom.2006.06.005
  24. Daasch, L. W.; Smith, D. C. Anal. Chem. 1951, 23, 853. https://doi.org/10.1021/ac60054a008
  25. Lu, Y.-C.; Mansour, A. N.; Yabuuchi, N. Yang, S. H. Chem. Mater. 2009, 21, 4408. https://doi.org/10.1021/cm900862v
  26. Balasubramanian, M.; Lee, H. S.; Sun, X.; Yang, X. Q.; Moodenbaugh, A. R.; McBreen, J.; Fischer, D. A.; Fu, Z. Electrochem. Solid- State Lett. 2002, 5, A22. https://doi.org/10.1149/1.1423802

Cited by

  1. Battery Cathodes vol.118, pp.20, 2014, https://doi.org/10.1021/jp501670g
  2. Battery Cathode Using Fluorinated Linear Carbonate as a High-Voltage Additive vol.161, pp.14, 2014, https://doi.org/10.1149/2.1141412jes