DOI QR코드

DOI QR Code

Synthesis and Characterization of New Mono-N-functionalized Tetraaza Macrocyclic Nickel(II) and Copper(II) Complexes

  • Received : 2011.05.20
  • Accepted : 2011.06.14
  • Published : 2011.08.20

Abstract

The reaction of bromoacetonitrile with 3,14-dimethyl-2,6,13,17-tetraazatetracyclo[$16.4.1^{2.6}.0^{1.18}.0^{7.12}$]tricosane ($L^{10}$) containing a N-$CH_2$-N linkage produces 17-cyanomethyl-3,14-dimethyl-2,6,13,17-tetraazatetracyclo-[$16.4.1^{2.6}.0^{1.18}.0^{7.12}$]tricosane ($L^{11}$). The mono-N-functionalized macrocyclic complexes $[ML^2]^{2+}$ (M = Ni(II) or Cu(II); $L^2$ = 2-cyanomethyl-5,16-dimethyl-2,6,13,17-tetraazatricyclo[$16.4.0.0^{7.12}$]docosane) can be prepared by the reaction of $L^{11}$ with nickel(II) or copper(II) ion in acetonitrile. The N-$CH_2CN$ group attached to $[ML^2]^{2+}$ readily reacts with water or methanol to yield the corresponding complexes of $HL^3$ bearing one N-$CH_2CONH_2$ pendant arm or $L^4$ bearing one $N-CH_2C(=NH)OCH_3$ group. The $N-CH_2CONH_2$ or $N-CH_2C(=NH)OCH_3$ group of each complex is coordinated to the central metal ion. Both $[NiL^4(H_2O)]^{2+}$ and $[CuL^4]^{2+}$ are quite stable in acidic aqueous solutions, but undergo hydrolysis to yield $[Ni(HL^3)(H_2O)]^{2+}$ or $[Cu(HL^3)]^{2+}$ in basic aqueous solutions. In contrast to $[Cu(HL^3)]^{2+}$, $[Ni(HL^3) (H_2O)]^{2+}$ is readily deprotonated to form $[NiL^3 (H_2O)]^+$ ($L^3$ = a deprotonated form of $HL^3$) in basic aqueous solutions.

Keywords

References

  1. Viola-Villegas, N.; Doyle, R. P. Coord. Chem. Rev. 2009, 253, 1906. https://doi.org/10.1016/j.ccr.2009.03.013
  2. Archibald, S. J. Annu. Rep. Prog. Chem., Sect. A 2010, 106, 295. https://doi.org/10.1039/b918391b
  3. Lukes, I.; Kotek, J.; Vojtisek, P.; Hermann, P. Coord. Chem. Rev. 2001, 216, 287. https://doi.org/10.1016/S0010-8545(01)00336-8
  4. Organo, V. G.; Filatov, A. S.; Quartararo, J. S.; Friedman, Z. M.; Rybak-Akimova, E. V. Inorg. Chem. 2009, 48, 8458.
  5. Lacerda, S.; Campello, M. P.; Marques, F.; Gano, L.; Kubicek, V.; Fouskova, P.; Toth, E.; Santos, I. Dalton Trans. 2009, 4509.
  6. Siegfried, L.; Comparone, A.; Neuburger, M.; Kaden, T. A. Dalton Trans. 2005, 30
  7. Kang, S.-G.; Kim, H.; Kwak, C.-H. Bull. Korean Chem. Soc. 2010, 31, 2701. https://doi.org/10.5012/bkcs.2010.31.9.2701
  8. Martinelli, J.; Balali-Mood, B.; Panizzo, R.; Lythgoe, M. F.; Andrew J. P. White, A. J. P.; Ferretti, P.; Steinke , J. H. G.; Vilar, R. Dalton Trans. 2010, 10056.
  9. Costamagna, J.; Ferraudi, G.; Matsuhiro, B.; Vampus-Vallette, M.; Canales, J.; Villagran, M.; Vargas, J.; Aguirre, M. J. Coord. Chem. Rev. 2000, 196, 125. https://doi.org/10.1016/S0010-8545(99)00165-4
  10. Silversides, J. D.; Allan, C. C.; Archibald, S. J. Dalton Trans. 2007, 971.
  11. Kang, S.-G.; Kim, M.-S.; Choi, J.-S.; Whang, D.; Kim, K. J. Chem. Soc. Dalton Trans. 1995, 363.
  12. Denat, F.; Diaz-Fernandez, Y. A.; Pallavicini, P.; Pasotti, L. Rousselin, Y. Sok, N. Dalton Trans. 2009, 6751.
  13. Siegfried, L.; Kaden, T. A. Dalton Trans. 2005, 3079.
  14. Halfen, J. A.; Young, Jr. V. G. Chem. Commun. 2003, 2894.
  15. Kang, S.-G.; Kim, S.-J.; Ryu, K.; Kim, J. Inorg. Chim. Acta 1998, 274, 24. https://doi.org/10.1016/S0020-1693(97)05986-0
  16. Kang, S.-G.; Ryu, K.; Song, J. Polyhedron 1999, 18, 2193. https://doi.org/10.1016/S0277-5387(99)00115-1
  17. Kang, S.-G.; Kim, N.; Jeong, J. H. Inorg. Chim. Acta 2011, 366, 247. https://doi.org/10.1016/j.ica.2010.11.003
  18. Kang, S.-G.; Song, J.; Jeong, J. H. Bull. Korean Chem. Soc. 2002, 23, 824. https://doi.org/10.5012/bkcs.2002.23.6.824
  19. Kaden, T. A. Chimica 2000, 54, 574.
  20. Kukushkin, V. Y.; Pombeiro, A. J. L. Inorg. Chim. Acta 2005, 358, 1. https://doi.org/10.1016/j.ica.2004.04.029
  21. Kang, S.-G.; Kim, H.; Kim, N.; Nam, K.; Lee, U. Inorg. Chim. Acta 2010, 363, 1694. https://doi.org/10.1016/j.ica.2010.03.009
  22. Kang, S.-G.; Kim, H.; Kim, N. Jeong, J. H. Bull. Korean Chem. Soc. 2009, 30, 3101. https://doi.org/10.5012/bkcs.2009.30.12.3101
  23. Zhang, Z.; He, Y.; Zhao, Q.; Xu, W.; Li, Y.-Z.; Wang, Z.-L. Inorg. Chem. Commun. 2006, 9, 269. https://doi.org/10.1016/j.inoche.2005.11.021
  24. Kang, S.-G.; Nam, K.; Jeong, J. H. Inorg. Chim. Acta 2009, 362, 1083. https://doi.org/10.1016/j.ica.2008.05.016
  25. Kang, S.-G.; Kweon, J. K.; Jeong, G. R.; Lee, U. Bull. Korean Chem. Soc. 2008, 29, 1905. https://doi.org/10.5012/bkcs.2008.29.10.1905
  26. Kang, S.-G.; Kweon, J. K.; Jung, S. K. Bull. Korean Chem. Soc. 1991, 12, 483.
  27. Wagner, F; Barefield, E. K. Inorg. Chem. 1976, 15, 408. https://doi.org/10.1021/ic50156a034
  28. Han, S.; Kim, T.; Lough, A. J.; Kim, J. C. Inorg. Chim. Acta 2011, 370, 170. https://doi.org/10.1016/j.ica.2011.01.051
  29. Sawer, D. T.; Heineman, W. R.; Beebe, J. M. Chemistry Experiments for Instrumental Methods; John Wiley: New York, 1984; pp 193-205.

Cited by

  1. Reduction of N-Cyanomethyl Groups on a Macrocyclic Nickel(II) Complex Using Sodium Borohydride: Synthesis of a Complex Bearing Two N-(2-Aminoethyl) Pendant Arms vol.35, pp.1, 2011, https://doi.org/10.5012/bkcs.2014.35.1.305