DOI QR코드

DOI QR Code

Monitoring and Prediction of Appliances Electricity Usage Using Neural Network

신경회로망을 이용한 가전기기 전기 사용량 모니터링 및 예측

  • Received : 2010.09.09
  • Accepted : 2011.06.01
  • Published : 2011.08.31

Abstract

In order to support increased consumer awareness regarding energy consumption, we present new ways of monitoring and predicting with energy in electric appliances. The proposed system is a design of a common electrical power outlet called smart plug that measures the amount of current passing through current sensor at 0.5 second. To acquire data for training and testing the proposed neural network, weather parameters used include average temperature of day, min and max temperature, humidity, and sunshine hour as input data, and power consumption as target data from smart plug. Using the experimental data for training, the neural network model based on Back-Propagation algorithm was developed. Multi layer perception network was used for nonlinear mapping between the input and the output data. It was observed that the proposed neural network model can predict the power consumption quite well with correlation coefficient was 0.9965, and prediction mean square error was 0.02033.

에너지 소모에 대한 증가되는 소비자의 관심을 지원하기 위하여 가전기기의 에너지 모니터링과 예측 방식을 제안한다. 제안한 시스템은 0.5초마다 전류 센서를 지나가는 전류량을 측정하는 스마트 플러그라는 일반 전기 콘센트로 설계하고, 신경회로망의 훈련과 시험 데이터를 얻기 위해 평균기온, 최저기온, 초고기온, 습도, 일조시간의 날씨 정보를 입력 데이터로 사용하고, 스마트 플러그를 통한 전기 사용량을 목표값으로 사용하였다. 훈련을 위한 실험데이터를 사용하여 역전파 알고리즘을 기반으로 한 신경회로망을 구성하였다. 입력과 출력 데이터의 비선형 매핑을 위해 다층신경회로망을 사용하였다. 제안한 신경회로망 모델은 상관관계 계수가 0.9965로 우수하게 전기 사용량을 예측할 수 있는 것을 확인하였으며, 예측의 평균 제곱 오차는 0.02033이다.

Keywords

References

  1. Advanced Technology Information Analysis Research, "IT Technology Road Map 2015," Jinhan M&B, 2009.
  2. Cho Young Jo, "Trends and Perspectives of ubiquito us Control Technologies for Smart Homes," ICASE Magazine, Vol. 9, No. 6, pp. 12-17, Nov. 2003.
  3. AsianaIDT, "Ubiquitous Home Solution: Home Netw ork Solutions", Ubiquitous, No. 45, pp. 74-79, May 2009.
  4. Office of the Gas and Electricity Markets, http://www.ofgem.gov.uk
  5. Jong-Min Ko, Il-Kwon Yang, In-Hyeob Yu, "A Study on Demand Pattern Analysis for Forecasting of Customer"s Electricity Demand," The Transactions of KIEE, Vol. 57, No. 8, pp. 1305-1490, Aug. 2008.
  6. George J. Tsekouras, Nikos D. Hatziargyriou, Evang elos N. Dialynas, "Two-Stage Pattern Recognition of Load Curves for Classification of Electricity Customers," IEEE TRANSACTIONS ON POWER SYSTEMS, Vol. 22, No. 3, pp. 1120-1128, Aug. 2007. https://doi.org/10.1109/TPWRS.2007.901287
  7. Kyung Kwon Jung, Won-Seok Lee, Yong Gu Lee, "Carbon Dioxide Emission Monitoring System using Electricity Usage," The Institute of Electronics Engineers of Korea 2010 Summer Conference, pp. 1799-1800, Jun. 2010.
  8. Min Goo Lee, Yong Guk Park, Kyung Kwon Jung, Jun Jae Yoo, Ha Gyeong Sung, "Design and Implementation of Smart Plug using Sensor Networks in Smart House," The Institute of Electronics Engineers of Korea 2010 Summer Conference, pp. 412-415, Jun. 2010.
  9. Intech, http://www.tinyosmall.co.kr
  10. Texas Instruments, http://www.ti.com
  11. Woo Seung Choi, Joo Dong Kim, "ANewType of the Elmaln Neural Network," Journal of the Korea Society of Computer and Information, Vol. 4, No. 1, pp. 62-67, Mar. 1999.
  12. Yong Gu Lee, Woo Seung Choi, "3 Steps LVQ Lear ning Algorithm using Forward C.P. Net.," Journal of the Korea Society of Computer and Information, Vol. 9, No. 4, pp. 33-39, Dec. 2004.
  13. Yong Gu Lee, Woo Seung Choi, "Learning Networks for Learning the Pattern Vectors causing Classification Error," Journal of the Korea Society of Computer and Information, Vol. 10, No. 5, pp. 77-86, Nov. 2005.