DOI QR코드

DOI QR Code

The Primality Test

소수 판별법

  • Lee, Sang-Un (Dept. of Multimedia Science, Gangneung-Wonju National University) ;
  • Choi, Myeong-Bok (Dept. of Multimedia Science, Gangneung-Wonju National University)
  • 이상운 (강릉원주대학교 멀티미디어공학과) ;
  • 최명복 (강릉원주대학교 멀티미디어공학과)
  • Received : 2011.03.11
  • Accepted : 2011.05.05
  • Published : 2011.08.31

Abstract

Generally, Miller-Rabin method has been the most popular primality test. This method arbitrary selects m at k-times from m=[2, n-1] range and (m,n)=1. Miller-Rabin method performs $k{\times}r$ times and reports prime as $m^d\;{\equiv}\;1(mod\;n)$ or $m^{2^rd}\;{\equiv}\;-1(mod n)$ such that n-1=$2^sd$, $0\;{\leq}\;r\;{\leq}\;s-1$. This paper suggests more simple primality test than Miller-Rabin method. This test method computes c=$p^{\frac{n-1}{2}}(mod\;n)$ for k times and reports prime as c=-1. The proposed primality test method reduces $k{\times}r$ times of Miller-Rabin method to k times.

대표적인 소수판별법으로 밀러-라빈방법이 적용되고 있다. 밀러-라빈판별법은 m=[2, n-1]에서 m을 k개 선택하여 n-1=$2^sd$, $0\;{\leq}\;r\;{\leq}\;s-1$ 에 대해 $m^d\;{\equiv}\;1(mod\;n)$ 또는 $m^{2^rd}\;{\equiv}\;-1(mod n)$로 소수를 판별하여 $k{\times}r$회를 수행한다. 본 논문은 c=$p^{\frac{n-1}{2}}(mod\;n)$을 계산하여 c=-1이면 소수로 판별하여 k회 수행하였다. 제안된 판별법은 밀러-라빈 판별법의 $k{\times}r$회를 k회로 감소시켰다.

Keywords

References

  1. D. Zagier "Newman's Short Proof of the Prime Nu mber Theorem," American. Mathematical. Monthly, Vol. 104, No. 8, pp. 705-708, 1997. https://doi.org/10.2307/2975232
  2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to Algorithms, 2nd Ed., MIT Press and McGraw-Hill. pp. 887-896, 2001.
  3. Wikipedia, "RSA," http://en.wikipedia.org/wiki/Rsa, 2010.
  4. M. O. Rabin, "Probabilistic algorithmfor testing p rimality," Journal of Number Theory, Vol. 12, No. 1, pp. 128-138, 1980. https://doi.org/10.1016/0022-314X(80)90084-0
  5. N. Kayal and N. Saxena, "Towards a Deterministic Polynomial-Time Test." Technical Report. Kanpur, India: Indian Institute of Technology, 2002.
  6. Wikipedia, "RSA number," http://en.wikipedia.org/ wiki/Rsa _number, 2010.