References
- Hooks SB, Martemyanov K, Zachariou V. A role of RGS proteins in drug addiction. Biochem Pharmacol. 2008;75:76-84. https://doi.org/10.1016/j.bcp.2007.07.045
- Chen JC, Chen PC, Chiang YC. Molecular mechanisms of psychostimulant addiction. Chang Gung Med J. 2009;32:148-154.
- White FJ, Kalivas PW. Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend. 1998;51: 141-153. https://doi.org/10.1016/S0376-8716(98)00072-6
- Kahlig KM, Galli A. Regulation of dopamine transporter function and plasma membrane expression by dopamine, amphetamine, and cocaine. Eur J Pharmacol. 2003;479:153-158. https://doi.org/10.1016/j.ejphar.2003.08.065
- Feltenstein MW, See RE. The neurocircuitry of addiction: an overview. Br J Pharmacol. 2008;154:261-274.
- Cunha-Oliveira T, Rego AC, Oliveira CR. Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Res Rev. 2008;58:192-208. https://doi.org/10.1016/j.brainresrev.2008.03.002
- Kantor L, Park YH, Wang KK, Gnegy M. Enhanced amphetamine- mediated dopamine release develops in PC12 cells after repeated amphetamine treatment. Eur J Pharmacol. 2002; 451:27-35. https://doi.org/10.1016/S0014-2999(02)02190-8
- Park YH, Kantor L, Wang KK, Gnegy ME. Repeated, intermittent treatment with amphetamine induces neurite outgrowth in rat pheochromocytoma cells (PC12 cells). Brain Res. 2002; 951:43-52. https://doi.org/10.1016/S0006-8993(02)03103-7
- Bretscher A, Edwards K, Fehon RG. ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol. 2002; 3:586-599. https://doi.org/10.1038/nrm882
- Louvet-Vallée S. ERM proteins: from cellular architecture to cell signaling. Biol Cell. 2000;92:305-316. https://doi.org/10.1016/S0248-4900(00)01078-9
- Niggli V, Rossy J. Ezrin/radixin/moesin: versatile controllers of signaling molecules and of the cortical cytoskeleton. Int J Biochem Cell Biol. 2008;40:344-349. https://doi.org/10.1016/j.biocel.2007.02.012
- Kim WY, Shin SR, Kim S, Jeon S, Kim JH. Cocaine regulates ezrin-radixin-moesin proteins and RhoA signaling in the nucleus accumbens. Neuroscience. 2009;163:501-505. https://doi.org/10.1016/j.neuroscience.2009.06.067
- Shi X, McGinty JF. Extracellular signal-regulated mitogenactivated protein kinase inhibitors decrease amphetamineinduced behavior and neuropeptide gene expression in the striatum. Neuroscience. 2006;138:1289-1298. https://doi.org/10.1016/j.neuroscience.2005.12.024
- Shi X, McGinty JF. Repeated amphetamine treatment increases phosphorylation of extracellular signal-regulated kinase, protein kinase B, and cyclase response element-binding protein in the rat striatum. J Neurochem. 2007;103:706-713. https://doi.org/10.1111/j.1471-4159.2007.04760.x
- Chen R, Furman CA, Zhang M, Kim MN, Gereau RW 4th, Leitges M, Gnegy ME. Protein kinase Cbeta is a critical regulator of dopamine transporter trafficking and regulates the behavioral response to amphetamine in mice. J Pharmacol Exp Ther. 2009;328:912-920. https://doi.org/10.1124/jpet.108.147959
- Torres GE. The dopamine transporter proteome. J Neurochem. 2006;97 Suppl 1:3-10. https://doi.org/10.1111/j.1471-4159.2006.03719.x
- Loder MK, Melikian HE. The dopamine transporter constitutively internalizes and recycles in a protein kinase C-regulated manner in stably transfected PC12 cell lines. J Biol Chem. 2003;278:22168-22174. https://doi.org/10.1074/jbc.M301845200
- hnson LA, Guptaroy B, Lund D, Shamban S, Gnegy ME. Regulation of amphetamine-stimulated dopamine efflux by protein kinase C beta. J Biol Chem. 2005;280:10914-10919. https://doi.org/10.1074/jbc.M413887200
- Moron JA, Zakharova I, Ferrer JV, Merrill GA, Hope B, Lafer EM, Lin ZC, Wang JB, Javitch JA, Galli A, Shippenberg TS. Mitogen-activated protein kinase regulates dopamine transporter surface expression and dopamine transport capacity. J Neurosci. 2003;23:8480-8488.
- Carvelli L, Moron JA, Kahlig KM, Ferrer JV, Sen N, Lechleiter JD, Leeb-Lundberg LM, Merrill G, Lafer EM, Ballou LM, Shippenberg TS, Javitch JA, Lin RZ, Galli A. PI 3-kinase regulation of dopamine uptake. J Neurochem. 2002;81:859-869. https://doi.org/10.1046/j.1471-4159.2002.00892.x
- Little KY, Elmer LW, Zhong H, Scheys JO, Zhang L. Cocaine induction of dopamine transporter trafficking to the plasma membrane. Mol Pharmacol. 2002;61:436-445. https://doi.org/10.1124/mol.61.2.436
- Li Y, Acerbo MJ, Robinson TE. The induction of behavioural sensitization is associated with cocaine-induced structural plasticity in the core (but not shell) of the nucleus accumbens. Eur J Neurosci. 2004;20:1647-1654. https://doi.org/10.1111/j.1460-9568.2004.03612.x
- Niggli V, Rossy J. Ezrin/radixin/moesin: versatile controllers of signaling molecules and of the cortical cytoskeleton. Int J Biochem Cell Biol. 2008;40:344-349. https://doi.org/10.1016/j.biocel.2007.02.012
- Kim HS, Bae CD, Park J. Glutamate receptor-mediated phosphorylation of ezrin/radixin/moesin proteins is implicated in filopodial protrusion of primary cultured hippocampal neuronal cells. J Neurochem. 2010;113:1565-1576.
- Furutani Y, Matsuno H, Kawasaki M, Sasaki T, Mori K, Yoshihara Y. Interaction between telencephalin and ERM family proteins mediates dendritic filopodia formation. J Neurosci. 2007;27:8866-8876. https://doi.org/10.1523/JNEUROSCI.1047-07.2007
- Jeon S, Park JK, Bae CD, Park J. NGF-induced moesin phosphorylation is mediated by the PI3K, Rac1 and Akt and required for neurite formation in PC12 cells. Neurochem Int. 2010;56:810-818. https://doi.org/10.1016/j.neuint.2010.03.005
Cited by
- Desmoglein 3 promotes cancer cell migration and invasion by regulating activator protein 1 and protein kinase C-dependent-Ezrin activation vol.33, pp.18, 2011, https://doi.org/10.1038/onc.2013.186