References
- Chekuri, C., Even, G. and Kortsarz, G. (2006), A greedy approximation algorithm for the group Steiner tree problem, Discrete Applied Mathematics, 154, 15-34. https://doi.org/10.1016/j.dam.2005.07.010
- Dror, M., Houari, M. and Chaouachi, J. (2000), Generalized spanning trees, European Journal of Operational Research, 120, 583-592. https://doi.org/10.1016/S0377-2217(99)00006-5
- Duin, C. W., Volgenant, A. and Voss, S. (2004), Solving group Steiner tree problems as Steiner problems, European Journal of Operational Research, 154, 323-329. https://doi.org/10.1016/S0377-2217(02)00707-5
- Feremans, C., Labbe, M., and Laporte, G. (2001), On generalized minimum spanning tree problem, European Journal of Operational Research, 134, 457-458. https://doi.org/10.1016/S0377-2217(00)00267-8
- Feremans, C., Labbe, M., and Laporte, G. (2002), A comparative analysis of several formulations for the generalized minimum spanning tree problem, Networks, 39, 29-34. https://doi.org/10.1002/net.10009
- Ferreira, C. E., Filho, F. M., and de Oliveria (2006), Some formulations for the group Steiner tree problem, Discrete Applied Mathematics, 154, 1877-1884. https://doi.org/10.1016/j.dam.2006.03.028
- Garg, N., Konjevod, G., and Ravi, R. (2000), A polylogarithmic approximation algorithm for the group Steiner tree problem, Journal of Algorithm, 37, 66-84. https://doi.org/10.1006/jagm.2000.1096
- Goemans, M. X. (1994), The Steiner tree polytope and related polyhedra, Mathematical Programming, 63, 157-182. https://doi.org/10.1007/BF01582064
- Goemans, M. X. and Myung, Y.-S. (1993), A catalog of Steiner tree formulations, Networks, 23, 19-28. https://doi.org/10.1002/net.3230230104
- Golden, B., Raghavan, S., and Stanojevic, D. (2005), Heuristic search for the generalized minimum spanning tree problem, INFORMS Journal on Computing, 17, 290-304. https://doi.org/10.1287/ijoc.1040.0077
- Houari, M. and Chaouachi, J. S. (2006), Upper and lower bounding strategies for the generalized spanning tree problem, European Journal of Operational Research, 171, 632-647. https://doi.org/10.1016/j.ejor.2004.07.072
- Ihler, E., Reich, P., and Widmayer, G. (1999), Class Steiner trees and VLSI-design, Discrete Applied Mathematics, 154, 173-194.
- Myung, Y.-S. (2007), A note on some formulations for the group Steiner tree problem, Working paper, Dankook Univ.
- Myung, Y.-S., Lee, C. H., and Tcha, D.W. (1995), On the generalized minimum spanning tree problem, Networks, 26, 231-241. https://doi.org/10.1002/net.3230260407
- Polzin, T. and Daneshmand, S. V. (2001), A comparison of Steiner tree relaxaions, Discrete Applied Mathematics, 112, 241-261. https://doi.org/10.1016/S0166-218X(00)00318-8
- Pop, P. C., Kern, W., and Still, G. (2006), A new relaxation method for the generalized minimum spanning tree problem, European Journal of Operational Research, 170, 900-908. https://doi.org/10.1016/j.ejor.2004.07.058
- Reich, G. and Widmayer, P. (1990), Beyond Steinerʼs problems : a VLSI oriented generalization, Proceedings of Graph-Theoretic Concepts in Computer Science (WG-89), Lecture Notes in Computer Science, 411, Springer, Berlin, 196-210.
- Salazar, J. J. (2000), A note on the generalized Steiner tree polytope, Discrete Applied Mathematics, 100, 137-144. https://doi.org/10.1016/S0166-218X(99)00200-0
- Wang, Z., Che, C. H., and Lim, A. (2006), Tabu Search for Generalized Minimum Spanning Tree Problem, Lecture Notes in Computer Science, 4099, Springer, Berlin.
- Yang, B. and Gillard, P. (2000), The class Steiner minimal tree problem : a lower bound and test problem generation, Acta Informatica, 37, 193-211. https://doi.org/10.1007/s002360000042