Clustering and Pattern Analysis for Building Semantic Ontologies in RESTful Web Services

RESTful 웹 서비스에서 시맨틱 온톨로지를 구축하기 위한 클러스터링 및 패턴 분석 기법

  • 이용주 (경북대학교 이공대학 컴퓨터정보학부)
  • Received : 2011.03.07
  • Accepted : 2011.05.27
  • Published : 2011.08.31

Abstract

With the advent of Web 2.0, the use of RESTful web services is expected to overtake that of the traditional SOAP-based web services. Recently, the growing number of RESTful web services available on the web raises the challenging issue of how to locate the desired web services. However, the existing keyword searching method is insufficient for the bad recall and the bad precision. In this paper, we propose a novel building semantic ontology method which employs both the clustering technique based on association rules and the semantic analysis technique based on patterns. From this method, we can generate ontologies automatically, reduce the burden of semantic annotations, and support more efficient web services search. We ran our experiments on the subset of 168 RESTful web services downloaded from the PregrammableWeb site. The experimental results show that our method achieves up to 35% improvement for recall performance, and up to 18% for precision performance compared to the existing keyword searching method.

웹 2.0의 등장과 함께 RESTful 웹 서비스의 활용이 전통적인 SOAP 기반 웹 서비스에 비해 크게 증가되고 있다. 최근 웹상에 이용 가능한 RESTful 웹 서비스들의 수가 급격하게 증가됨에 따라 사용자들이 적합한 웹 서비스를 찾는 것은 매우 중요한 이슈로 대두되었다. 그러나 기존의 키워드 기반 검색 방법은 나쁜 재현율과 나쁜 정확률 때문에 문제가 많다. 본 논문에서는 연관규칙 기반 클러스터링 기법에 패턴 기반 시맨틱 분석 기법을 추가한 하나의 새로운 시맨틱 온톨로지 구축 방법을 제안한다. 이를 통해 온톨로지를 자동 구축하여 시맨틱 정보의 주석처리 부담을 줄일 수 있고, 보다 효율적인 웹 서비스 검색을 지원한다. 본 논문에서 제안된 방법은 ProgrammableWeb 사이트로부터 168개의 RESTful 웹 서비스를 다운로드 받아 실험 분석을 수행한 결과, 기존의 키워드 기반 검색 방법에 비해 재현율과 정확률 두 측면에서 각각 35%, 18%의 성능 향상을 보였다.

Keywords

References

  1. L. Richardson and S. Ruby, RESTful Web Services: Web services for the real world, O'Reilly Media, 2007
  2. R. Fielding, Architectural Styles and The Design of Network-based Software Architectures, PhD thesis, University of California, 2000
  3. http://pipes.yahoo.com/pipes
  4. T. Loton, Introduction to Microsoft Popfly, No Programming Required, Lotontech Limited, 2008
  5. http://mashmaker.intel.com/web/learnmore.html
  6. K. Gomadam, A. Ranabahu, and A. Sheth, "SA-REST: Semantic Annotation of Web Resources," http://www.w3.org/Submission/SA-REST/, 2010
  7. O. F. F. Filho and M. A. G. V. Ferreira, "Semantic Web Services: A RESTful Approach," IADIS International Conference WWW/Internet, 2009
  8. D. Martin, et al., "OWL-S: Semantic Markup for Web Services," http://www.w3.org/Submission/OWL-S/, 2004
  9. J. Bruijin, et al., "Web Service Modeling Ontology (WSMO)," http://www.w3.org/Submission/WSMO/, 2005
  10. J. Farrell, H. Lausen, "Semantic Annotations for WSDL and XML Schema," http://www.w3.org/TR/sawsdl/, 2007
  11. R. Battle and E. Benson, "Bridging the Semantic Web and Web 2.0 with Representational State Transfer (REST)," Journal of Web Semantics, Vol. 6, pp. 61-69, 2008 https://doi.org/10.1016/j.websem.2007.11.002
  12. A. Hess, E. Johnston, and N. Kushmerick, "ASSM: A Tool for Semi-Automatically Annotating Semantic Web Services," Proceedings of the 3rd International Semantic Web Conference, 2004
  13. X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang, "Similarity Search for Web Services," Proceedings of VLDB, 2004
  14. M. Sabou, C. Wroe, C. Goble, and H. Stuckenschmidt, "Learning Domain Ontologies for Semantic Web Service Descriptions," Journal of Web Semantics, 3(4), 2005
  15. H. Guo, A. Ivan, R. Akkiraju, and R. Goodwin, "Learning Ontologies to Improve the Quality of Automatic Web Service Matching," Proceedings of IEEE International Conference on Web Services, 2007
  16. M. Hadley, "Web Application Description Language (WADL)," http://www.w3.org/Submission/wadl/, 2009
  17. G. Salton and M. J. McGill, Introduction to Modern Information Retrieval, McGraw-Hill, 1983
  18. R. Agrawal, T. Imielinski, and A. Swami, "Mining Association Rules between Sets of Items in Large Databases," Proceedings of the 1993 ACM-SIGMOD International Conference Management of Data, 1993
  19. R. Agrawal and R. Srikant, "Fast Algorithm for Mining Associations Rules," Proceedings of the 20th VLDB Conference, Santiage, Chile, Sept. 1994
  20. P. Tan, M. Steinbach, and V. Kumar, Introdoction to Data Mining, Addition Wesley, 2005
  21. P. Velardi, P. Fabriani, and M. Missikoff, "Using Text Processing Techniques to Automatically Enrich a Domain Ontology," Proceedings of the ACM International Conference on Formal Ontology in Information Systems, 2001
  22. http://www.programmableweb.com
  23. http://crftagger.sourceforge.net/
  24. 최기선, 류법모, "온톨로지 구축과 학습: 상하위 관계," 정보과학회지, 제24권, 제4호, pp. 24-30, 2006
  25. S. Mokarizadeh, P. Kungas, and M. Matskin, "Ontology Learning for Cost-Effective Largescale Semantic Annotation of Web Service Interfaces," Proceedings of the 17th International Conference on Knowledge Engineering and Management by the Masses, 2010
  26. 임수연, 송무희, 이상조, "전문용어의 처리에 의한 도메인 온톨로지의 구축," 정보과학회지논문지:소프트웨어 및 응용, 제31권, 제3호, pp. 353-360, 2004
  27. http://opennlp.sourceforge.net/
  28. http://www.cs.uregina.ca/-dbd/cs831/notes/itemsets/dic.java
  29. http://niels.drni.de/s9y/pages/clusterlib.html