초록
웹의 등장은 전통적인 정보검색을 비롯하여 지식관리와 일반 상거래 등 사회 전 분야의 급격한 변혁을 초래하였다. 그러나 검색엔진은 일반적으로 관련된 계산함수에 의해 순서화된 URL의 방대한 목록을 제공하지만, 관련 없는 정보의 필터링이나 사용자가 필요로 하는 정보의 검색에 많은 시간이 소요된다. 본 논문에서는 웹상의 효율적인 문서검색을 위해서 영역 코퍼스 정보를 바탕으로 확장된 퍼지 계층화 의사결정법(Extended Fuzzy AHP Method : EFAM)과 유사도 기법(SImilarity Technology : SIT)을 결합하고, 감성기준을 고려한 EFASIT(Extended Fuzzy AHP and SImilarity Technology)모델을 제안한다. 제안한 감성기준을 고려한 EFASIT 모델은 다양한 의사결정자들의 퍼지지식의 통합으로 좀 더 명확한 규칙을 생성할 수 있고 의사결정을 하는데 도움을 준다는 것을 실험을 통하여 확인한다.
The appearance of Web has brought an substantial revolution to all fields of society such knowledge management and business transaction as well as traditional information retrieval. In this paper, we propose an EFASIT(Extended Fuzzy AHP and SImilarity Technology) model considering the emotion analysis. And we combine the Extended Fuzzy AHP Method(EFAM) with SImilarity Technology(SIT) based on the domain corpus information in order to efficiently retrieve the document on the Web. The proposed the EFASIT model can generate the more definite rule according to integration of fuzzy knowledge of various decision-maker, and can give a help to decision-making, and confirms through the experiment.