

ON L-FUZZY ω -BASICALLY DISCONNECTED SPACES

M. Sudha, E. Roja, and M. K. Uma

ABSTRACT. In this paper L-fuzzy ω -closed and L-fuzzy ω -open sets are introduced. Also a new class of L-fuzzy topological space called L-fuzzy ω -basically disconnected space is introduced. Several characterizations and some interesting properties are also given.

1. Introduction

The fuzzy concept has invaded almost all branches of Mathematics since the introduction of the concept by Zadeh[14]. Fuzzy sets have applications in many fields such as information [10] and control [11]. The theory of fuzzy topological spaces was introduced and developed by Chang [3] and since then various important notions in classical topology have been extended to fuzzy topological spaces. Rodabaugh [7] discussed normality and the *L*-fuzzy unit interval. He [8] also studied fuzzy addition in the *L*-fuzzy real line. Hoeche [6] studied the characterizations of *L*-topologies by *L*-valued neighbourhoods. An *L*-fuzzy normal spaces and Tietze extension theorem were discussed by Tomash Kubiak [13]. The concept of ω -open set was studied in [9]. The purpose of this paper is to introduce *L*-fuzzy ω -closed, *L*-fuzzy ω -open sets and a new class of *L*-fuzzy topological spaces called *L*-fuzzy ω -basically disconnected space. In this connection several characterizations and some interesting properties are also given.

2. Preliminaries

Definition 2.1. ([1]) Let (X, T) be a fuzzy topological space and λ be a fuzzy set in (X, T). λ is called a fuzzy G_{δ} -set if $\lambda = \bigwedge_{i=1}^{\infty} \lambda_i$ where each $\lambda_i \in T, i \in I$.

©2011 The Youngnam Mathematical Society

Received September 16, 2009; Accepted February 14, 2011.

 $^{2000\} Mathematics\ Subject\ Classification.\ 54A40, 03E72.$

Key words and phrases. L-fuzzy ω -closed set, L-fuzzy ω -open set, L-fuzzy ω -basically disconnected space, L-fuzzy ω^* -continuous map, L-fuzzy ω^* -irresolute, strong F_{σ} L-fuzzy ω^* -continuous map, lower (upper) L-fuzzy ω^* -continuous map.

Definition 2.2. ([1]) Let (X, T) be a fuzzy topological space and λ be a fuzzy set in (X, T). λ is called a fuzzy F_{σ} -set if $\lambda = \bigvee_{i=1}^{\infty} \lambda_i$ where each $1 - \lambda_i \in T, i \in I$.

Definition 2.3. ([2]) Throughout this paper $(L, \leq, ')$ stands for an infinitely distributive lattice with an order reversing involution. Such a lattice being complete has a least element 0 and a greatest element 1. Let X be a non-empty set. An L-fuzzy set in X is an element of the set L^X of all functions from X to L.

Definition 2.4. The *L*-fuzzy real line R(L)[4] is the set of all monotone decreasing elements λ in L^R satisfying $\vee \{\lambda((t)/t \in R\} = 1 \text{ and } \wedge \{\lambda(t)/t \in R\} = 0$, after the identification of $\lambda, \mu \in L^R$ iff $\lambda(t-) = \mu(t-)$ and $\lambda(t+) = \mu(t+)$ for all $t \in R$ where $\lambda(t-) = \wedge \{\lambda(s)/s < t\}$ and $\lambda(t+) = \vee \{\lambda(s)/s > t\}$. The natural *L*-fuzzy topology on R(L) is generated from the subbases $\{L_t, R_t/t \in R\}$, where $L_t(\lambda) = \lambda(t-)'$ and $R_t(\lambda) = \lambda(t+)$. The *L*-fuzzy unit interval I(L)[5] is a subset of R(L) such that $[\lambda] \in I(L)$ if $\lambda(t) = 1$ for t < 0 and $\lambda(t) = 0$ for t > 1. It is equipped with the subspace *L*-fuzzy topology.

Definition 2.5. ([13]) If $A \in L^X$ is crisp, then (A, T_A) is an *L*-fuzzy topological space called a crisp subspace of (X, T), where $T_A = \{U/A | U \in T\}$ is called the subspace *L*-fuzzy topology.

Definition 2.6. ([9]) A subset of a topological space (X, T) is called ω -closed in (X, T) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, T). A subset A is called ω -open in (X, T) if its complement, A^C is ω -closed.

Definition 2.7. ([12]) Let (X,T) be any fuzzy topological space. (X,T) is called fuzzy basically disconnected if the closure of every fuzzy open F_{σ} set is fuzzy open.

3. Characterizations and properties of *L*-fuzzy ω -basically disconnected spaces

In this section a new class of set called *L*-fuzzy ω -closed set and thereby a new class of space called *L*-fuzzy ω -basically disconnected space is introduced. Some interesting properties and characterizations are also discussed.

Definition 3.1. Let (X,T) be any *L*-fuzzy topological space and λ be any *L*-fuzzy set in (X,T). λ is called

(a) an *L*-fuzzy
$$G_{\delta}$$
 set if $\lambda = \bigwedge_{i=1}^{\infty} \lambda_i$ where each λ_i is *L*-fuzzy open.

(b) an *L*-fuzzy F_{σ} set if $\lambda = \bigvee_{i=1}^{\infty} \lambda_i$ where each $(1 - \lambda_i)$ is *L*-fuzzy open.

Definition 3.2. Let λ be any *L*-fuzzy set in the *L*-fuzzy topological space (X, T). Then we define

$$L - int(\lambda) = \forall \{\mu/\mu \le \lambda \text{ and } \mu \text{ is } L - \text{fuzzy open} \},$$

$$L - cl(\lambda) = \land \{\mu/\mu \ge \lambda \text{ and } \mu \text{ is } L - \text{fuzzy closed} \}.$$

Definition 3.3. Let λ be any *L*-fuzzy set in the *L*-fuzzy topological space (X, T). λ is called *L*-fuzzy semi-open if $\lambda \leq L$ -cl(L- $int(\lambda))$.

Definition 3.4. An *L*-fuzzy set λ of an *L*-fuzzy topological space (X, T) is called *L*-fuzzy ω -closed in (X, T) if L- $cl(\lambda) \leq \mu$ whenever $\lambda \leq \mu$ and μ is *L*-fuzzy semi-open in (X, T). The complement of *L*-fuzzy ω -closed set is *L*-fuzzy ω -open.

Note 3.1. (a) Let (X,T) be an *L*-fuzzy topological space. An *L*-fuzzy set λ in (X,T) which is both *L*-fuzzy ω -open and *L*-fuzzy F_{σ} is denoted by *L*-fuzzy ω -open F_{σ} .

(b) Let (X,T) be an *L*-fuzzy topological space. An *L*-fuzzy set λ in (X,T) which is both *L*-fuzzy ω -closed and *L*-fuzzy G_{δ} is denoted by *L*-fuzzy ω -closed G_{δ} .

Notation 1. An *L*-fuzzy set λ which is both *L*-fuzzy ω -open F_{σ} and *L*-fuzzy ω -closed G_{δ} is denoted by *L*-fuzzy ω -*COGF*.

Definition 3.5. Let (X, T) be an *L*-fuzzy topological space. For any *L*-fuzzy set λ in (X, T), *L*-fuzzy ω^* -closure of λ (briefly, $L\omega^*$ - $cl(\lambda)$ is defined as $L\omega^*$ - $cl(\lambda) = \wedge \{\mu : \mu \geq \lambda \text{ and } \mu \text{ is } L$ -fuzzy ω -closed $G_{\delta}\}$.

Definition 3.6. Let (X, T) be an *L*-fuzzy topological space. For any *L*-fuzzy set λ in (X, T), *L*-fuzzy ω^* -interior of λ (briefly, $L\omega^*$ - $int(\lambda)$) is defined as $L\omega^*$ - $int(\lambda) = \vee \{\mu : \mu \leq \lambda \text{ and } \mu \text{ is } L$ -fuzzy ω -open $F_{\delta}\}$.

Remark 3.1. Let (X, T) be an *L*-fuzzy topological space. For any *L*-fuzzy set λ in (X, T)

(a) $1 - L\omega^* - int(\lambda) = L\omega^* - cl(1 - \lambda),$ (b) $1 - L\omega^* - cl(\lambda) = L\omega^* - int(1 - \lambda).$

(Y, S).

Definition 3.7. Let (X, T) and (Y, S) be any two *L*-fuzzy topological spaces. A mapping $f : (X, T) \to (Y, S)$ is called *L*-fuzzy ω^* -continuous if $f^{-1}(\lambda)$ is *L*-fuzzy ω -closed G_{δ} in (X, T) for every *L*-fuzzy closed and *L*-fuzzy G_{δ} set λ in

Definition 3.8. Let (X, T) and (Y, S) be any two *L*-fuzzy topological spaces. A mapping $f : (X, T) \to (Y, S)$ is called *L*-fuzzy ω^* -irresolute if the inverse image of every *L*-fuzzy ω -open F_{σ} set in (Y, S) is *L*-fuzzy ω -open F_{σ} in (X, T).

Definition 3.9. Let (X, T) and (Y, S) be any two *L*-fuzzy topological spaces. A mapping $f : (X, T) \to (Y, S)$ is said to be *L*-fuzzy ω^* -open if the image of every *L*-fuzzy ω -open F_{σ} set in (X, T) is *L*-fuzzy ω -open F_{σ} in (Y, S). **Proposition 3.1.** Let (X,T) and (Y,S) be any two L-fuzzy topological spaces. Then $f : (X,T) \to (Y,S)$ is L-fuzzy ω^* -irresolute iff $f(L\omega^*-cl(\lambda)) \leq L\omega^*-cl(f(\lambda))$, for every L-fuzzy set λ in (Y,S).

Proposition 3.2. Let (X,T) and (Y,S) be any two L-fuzzy topological spaces and let $f : (X,T) \to (Y,S)$ be an L-fuzzy ω^* -open surjective function. Then $f^{-1}(L\omega^*-cl(\lambda)) \leq L\omega^*-cl(f^{-1}(\lambda))$, for each L-fuzzy set λ in (Y,S).

Definition 3.10. Let (X, T) be any *L*-fuzzy topological space. (X, T) is called *L*-fuzzy ω -basically disconnected if the *L*-fuzzy ω^* -closure of every *L*-fuzzy ω -open F_{σ} set is *L*-fuzzy ω -open F_{σ} .

Proposition 3.3. For an L-fuzzy topological space (X,T) the following statements are equivalent:

- (a) (X,T) is an L-fuzzy ω -basically disconnected space,
- (b) For each L-fuzzy ω -closed G_{δ} set λ , $L\omega^*$ -int(λ) is L-fuzzy ω -closed G_{δ} ,
- (c) For each L-fuzzy ω -open F_{σ} set λ , $L\omega^*$ - $cl(\lambda) + L\omega^*$ - $cl(1 L\omega^* cl(\lambda)) =$
- (d) For every pair of L-fuzzy ω -open F_{σ} sets λ and μ such that $L\omega^*$ - $cl(\lambda) + \mu = 1$, we have $L\omega^*$ - $cl(\lambda) + L\omega^*$ - $cl(\mu) = 1$.

Proof. (a) \Rightarrow (b) Let λ be any *L*-fuzzy ω -closed G_{δ} set. Then $1 - \lambda$ is *L*-fuzzy ω -open F_{σ} . Now $L\omega^* - cl(1 - \lambda) = 1 - L\omega^* - int(\lambda)$. By (a), $L\omega^* - cl(1 - \lambda)$ is *L*-fuzzy ω -open, which implies that $L\omega^* - int(\lambda)$ is *L*-fuzzy ω -closed G_{δ} . (b) \Rightarrow (c) Let λ be any *L*-fuzzy ω -open F_{δ} set. Then

$$L\omega^* - cl(\lambda) + L\omega^* - cl(1 - L\omega^* - cl(\lambda)) = L\omega^* - cl(\lambda) + L\omega^* - cl(L\omega^* - int(1 - \lambda)). \quad (3.1)$$

Since λ is *L*-fuzzy ω -open F_{σ} , $1 - \lambda$ is *L*-fuzzy ω -closed G_{δ} . Hence by (b), $L\omega^*$ -int $(1 - \lambda)$ is *L*-fuzzy ω -closed G_{δ} . Therefore by 3.1,

$$L\omega^* - cl(\lambda) + L\omega^* - cl(1 - L\omega^* - cl(\lambda)) = L\omega^* - cl(\lambda) + L\omega^* - int(1 - \lambda)$$
$$= L\omega^* - cl(\lambda) + 1 - L\omega^* - cl(\lambda)$$
$$= 1$$

Therefore, $L\omega^* - cl(\lambda) + L\omega^* - cl(1 - L\omega^* - cl(\lambda)) = 1$. (c) \Rightarrow (d) Let λ and μ be *L*-fuzzy ω -open F_{σ} sets such that

$$L\omega^* - cl(\lambda) + \mu = 1. \tag{3.2}$$

Then by (c),

1.

$$1 = L\omega^* - cl(\lambda) + L\omega^* - cl(1 - L\omega^* - cl(\lambda)) = L\omega^* - cl(\lambda) + L\omega^* - cl(\mu).$$

Therefore, $L\omega^*-cl(\lambda) + L\omega^*-cl(\mu) = 1$. (d) \Rightarrow (a) Let λ be any *L*-fuzzy ω -open F_{σ} set. Put $\mu = 1 - L\omega^*-cl(\lambda)$. Then $L\omega^*-cl(\lambda) + \mu = 1$. Therefore by (d), $L\omega^*-cl(\lambda) + L\omega^*-cl(\mu) = 1$. This implies $L\omega^*-cl(\lambda)$ is *L*-fuzzy ω -open F_{σ} and so (X,T) is *L*-fuzzy ω -basically disconnected.

Proposition 3.4. Let (X,T) be any L-fuzzy ω -basically disconnected space and (Y,S) be any L-fuzzy topological space. Let $f : (X,T) \to (Y,S)$ be L-fuzzy ω^* -irresolute, L-fuzzy ω^* -open and surjective function. Then (Y,S) is L-fuzzy ω -basically disconnected.

Proof. The proof follows from the concepts of *L*-fuzzy ω^* -irresolute, *L*-fuzzy ω^* -open maps and by the Propositions 3.1 and 3.2.

Definition 3.11. Let $\{(X_{\alpha}, T_{\alpha}) | \alpha \in \Delta\}$ be a family of disjoint *L*-fuzzy topological spaces. Let $X = \bigcup_{\alpha \in \Delta} X_{\alpha}$. Define $T = \{\lambda \in L^X / \lambda / X_{\alpha} \text{ is } L\text{-fuzzy } \omega\text{-open} \}$

 F_{σ} in (X_{α}, T_{α}) . Then (X, T) is an *L*-fuzzy topological space called the *L*-fuzzy topological sum of $\{(X_{\alpha}, T_{\alpha}) | \alpha \in \Delta\}$.

Proposition 3.5. Let $\{(X_{\alpha}, T_{\alpha})/\alpha \in \Delta\}$ be a family of disjoint L-fuzzy ω basically disconnected spaces and let (X, T) be their L-fuzzy topological sum. Then (X, T) is L-fuzzy ω -basically disconnected.

Proof. Let λ be an *L*-fuzzy ω -open F_{σ} set in (X, T). Then λ/X_{α} is *L*-fuzzy ω open F_{σ} in (X_{α}, T_{α}) . Since (X_{α}, T_{α}) is *L*-fuzzy ω -basically disconnected, $L\omega^*$ $cl_{X_{\alpha}}(\lambda/X_{\alpha})$ is *L*-fuzzy ω -open F_{σ} in (X_{α}, T_{α}) . Now $L\omega^* - cl_X(\lambda)/X_{\alpha} = L\omega^*$ $cl_{X_{\alpha}}(\lambda/X_{\alpha})$, which implies that $L\omega^* - cl_X(\lambda)$ is *L*-fuzzy ω -open F_{σ} in (X, T). Therefore (X, T) is *L*-fuzzy ω -basically disconnected.

Definition 3.12. Let (X,T) be an *L*-fuzzy topological space. A mapping $f: X \to R(L)$ is called lower (resp. upper) *L*-fuzzy ω^* -continuous if $f^{-1}(R_t)$ (resp. $f^{-1}(L_t)$) is *L*-fuzzy ω -open F_{σ} (resp. *L*-fuzzy ω -open F_{σ}/L -fuzzy ω -closed G_{δ}), for each $t \in R$.

Proposition 3.6. Let (X,T) be an L-fuzzy topological space. Then (X,T) is L-fuzzy ω -basically disconnected iff for all L-fuzzy ω -open F_{σ} set λ and an L-fuzzy ω -closed G_{δ} set μ such that $\lambda \leq \mu, L\omega^*$ -cl $(\lambda) \leq L\omega^*$ -int (μ) .

Proof. Let λ be *L*-fuzzy ω -open F_{σ} and μ be *L*-fuzzy ω -closed G_{δ} with $\lambda \leq \mu$. Then by (b) of Proposition 3.3, $L\omega^* - int(\mu)$ is *L*-fuzzy ω -closed G_{δ} . Also since λ is *L*-fuzzy ω -open $F_{\sigma}, L\omega^* - cl(\lambda) \leq L\omega^* - int(\mu)$. Conversely let μ be any *L*-fuzzy ω -closed G_{δ} set. Then $L\omega^* - int(\mu)$ is *L*-fuzzy ω -open F_{σ} in (X, T) and $L\omega^* - int(\mu) \leq \mu$. Therefore by assumption, $L\omega^* - cl(L\omega - int(\mu)) \leq L\omega^* - int(\mu)$. This implies that $L\omega^* - int(\mu)$ is *L*-fuzzy ω -closed G_{δ} . Hence by (b) of Proposition 3.3, it follows that (X, T) is *L*-fuzzy ω -basically disconnected. \Box

Remark 3.2. Let (X,T) be an *L*-fuzzy ω -basically disconnected space. Let $\{\lambda_i, 1 - \mu_i / i \in N\}$ be a collection such that λ'_i s, are *L*-fuzzy ω -open F_{σ} and μ'_i s are *L*-fuzzy ω -closed G_{δ} and let λ, μ are *L*-fuzzy ω -COGF. If $\lambda_i \leq \lambda \leq \mu_j$ and $\lambda_i \leq \mu \leq \mu_j$ for all $i, j \in N$, then there exists an *L*-fuzzy ω - COGF set γ such that $L\omega^*$ - $cl(\lambda_i) \leq \gamma \leq L\omega^*$ - $int(\mu_j)$, for all $i, j \in N$.

Proposition 3.7. Let (X,T) be an L-fuzzy ω -basically disconnected space. Let $\{\lambda_r\}_{r\in Q}$ and $\{\mu_r\}_{r\in Q}$ be monotone increasing collections of L-fuzzy ω -open F_{σ} sets and L-fuzzy ω -closed G_{δ} sets of (X,T) and suppose that $\lambda_{q_1} \leq \mu_{q_2}$ whenever $q_1 < q_2$ (Q is the set of all rational numbers). Then there exists a monotone increasing collection $\{\gamma_r\}_{r\in Q}$ of L-fuzzy ω -COGF sets of (X,T) such that $L\omega^*$ -cl $(\lambda_{q_1}) \leq \gamma_{q_2}$ and $\gamma_{q_1} \leq L\omega^*$ -int (μ_{q_2}) whenever $q_1 < q_2$

Proposition 3.8. Let (X,T) be any L-fuzzy topological space; let $\lambda \in L^X$ and let $f: X \to R(L)$ be such that

$$f(x)(t) = \begin{cases} 1, & if \quad t < 0\\ \lambda(x), & if \quad 0 \le t \le 1\\ 0, & if \quad t > 0. \end{cases}$$

for all $x \in X$. Then f is lower(resp.upper) L-fuzzy ω^* -continuous iff λ is L-fuzzy ω -open F_{σ} (resp.L-fuzzy ω -open F_{σ}/L -fuzzy ω -closed G_{δ}).

Remark 3.2, Proposition 3.7 and Proposition 3.8 can be established by the concepts of *L*-fuzzy ω -COGF set, *L*-fuzzy ω^* -interior, *L*-fuzzy ω^* -closure and the lemmas given in [13] with some slight suitable modifications.

Definition 3.13. The characteristic function of $\lambda \in L^X$ is the map $\chi_{\lambda} : X \to I(L)$ defined by $\chi_{\lambda}(x) = (\lambda(x)), x \in X$.

Proposition 3.9. Let (X,T) be an L-fuzzy topological space and let $\lambda \in L^X$ Then χ_{λ} is lower (resp.upper) L-fuzzy ω^* -continuous iff λ is L-fuzzy ω -open F_{σ} (resp. L-fuzzy ω -open F_{σ}/L -fuzzy ω -closed G_{δ}).

Proof. The proof follows from Proposition 3.8.

Definition 3.14. Let (X, T) and (Y, S) be any two *L*-fuzzy topological spaces. A mapping $f : (X, T) \to (Y, S)$ is called strong F_{σ} *L*-fuzzy ω^* -continuous if $f^{-1}(\lambda)$ is *L*-fuzzy ω -COGF set of (X, T), for every *L*-fuzzy ω -open F_{σ} set λ of (Y, S).

Proposition 3.10. Let (X,T) be an L-fuzzy topological space. Then the following statements are equivalent :

- (a) (X,T) is an L-fuzzy ω -basically disconnected space.
- (b) If $g, h: X \to R(L)$ where g is lower L-fuzzy ω^* -continuous, h is upper L-fuzzy ω^* -continuous, then there exists $f \in C_{F_{\sigma}}L\omega(X)$ such that $g \leq f \leq h$. $[C_{F_{\sigma}}L\omega(X) = collection of all strong F_{\sigma} L$ -fuzzy ω^* -continuous function on X with values in R(L)].
- (c) If λ is L-fuzzy ω -closed G_{δ} and μ is L-fuzzy ω -open F_{σ} sets such that $\mu \leq \lambda$, then there exists a strong F_{σ} L-fuzzy ω^* -continuous function $f: X \to I(L)$ such that $\mu \leq (1 \lambda_1)f \leq R_0 f \leq \lambda$.

Proof. (a) \Rightarrow (b) can be established by the concept of *L*-fuzzy ω -COGF set and the theorem 3.7 of Kubiak [13] with some slight suitable modifications.

(b) \Rightarrow (c) Suppose λ is *L*-fuzzy ω -closed G_{δ} and μ is *L*-fuzzy ω -open F_{σ} such that $\mu \leq \lambda$. Then $\chi_{\mu} \leq \chi_{\lambda}$ where $\chi_{\mu}, \chi_{\lambda}$ are lower and upper *L*-fuzzy ω^* -continuous respectively. Hence by (b), there exists a strong F_{δ} *L*-fuzzy ω^* -continuous function $f: X \to R(L)$ such that, $\chi_{\mu} \leq f \leq \chi_{\lambda}$. Clearly $f(x) \in I(L)$, for all $x \in X$ and $\mu = (1 - L_1)\chi_{\mu} \leq (1 - L_1)f \leq R_0 f \leq R_0 \chi_{\lambda} = \lambda$. Therefore $\mu \leq (1L_1)f \leq R_0 f \leq \lambda$.

(c) \Rightarrow (a) $(1 - L_1) f$ and $R_0 f$ are *L*-fuzzy ω -COGF sets. By Proposition3.6, (X, T) is an *L*-fuzzy ω -basically disconnected space.

Proposition 3.11. Let (X,T) be an L-fuzzy ω -basically disconnected space and let $A \subset X$ be such that χ_A is L-fuzzy ω^* -open. Let $f : (A, T/A) \to I(L)$ be strong F_{σ} L-fuzzy ω^* -continuous. Then f has a strong F_{σ} L-fuzzy ω^* continuous extension over (X,T).

Proof. Let $g, h : X \to I(L)$ be such that g = f = h on A and $g(x) = \langle 0 \rangle$, $h(x) = \langle 1 \rangle$ if $x \notin A$. We now have

$$R_t g = \left\{ egin{array}{ccc} \mu_t \wedge \chi_A, & if & t \geq 0 \ 1, & if & t < 0 \end{array}
ight.$$

where μ_t is L-fuzzy ω -open F_{σ} and is such that $\mu_t/A = R_t f$ and

$$L_t h = \begin{cases} \lambda_t \wedge \chi_A, & if \quad t \le 1\\ 1, & if \quad t > 1 \end{cases}$$

where λ_t is *L*-fuzzy ω -open F_{σ}/L -fuzzy ω -closed G_{δ} and is such that $\lambda_t/A = L_t f$. Thus g is lower *L*-fuzzy ω^* -continuous h is upper *L*-fuzzy ω^* -continuous and $g \leq h$. By Proposition 3.10, there is a strong F_{σ} *L*-fuzzy ω^* -continuous function $F: X \to I(L)$ such that $g \leq F \leq h$. Hence $F \equiv f$ on A. \Box

Acknowledgement

The authors express their sincere thanks to the referee for his valuable comments regarding the improvement of the paper.

References

- [1] Balasubramanian. G., Maximal fuzzy topologies, KYBERNETIKA **31** (1995), 459–464.
- [2] Birkhoff, G., Lattice theory, Amer. Math. Soc. Colloq. Pubil. Vol. 25, Amer.Math. Soc., Providence, R.I., 1973.
- [3] Chang. C. L., Fuzzy topological spaces, J.Math. Anal. Appl. 24 (1968), 182–190.
- [4] Ganter. T. E., Stein lage R. C. and Warren. R. H., Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62 (1978), 547–562.
- [5] Hutton. B., Normality in fuzzy topological spaces, J. Math. Anal. Appl. 43 (1973), 734– 742.
- [6] Hoche. V., Characterization of L-topologies by L-valued neighbourhoods, in [5], 389-432.
- [7] Rodabaugh. S. E., Normality and L-Fuzzy unit interval, Abstracts. Amer. Math. Soc. 1 (1980), 126.

- [8] Rodabaugh. S. E., Fuzzy addition in the L-fuzzy real line, Fuzzy Sets and Systems 8 (1982), 39-52.
- [9] Sheik John. M., A study on generalizations of closed sets and continuous maps in topological spaces, PH.D. Thesis, Bharathiar University, Coimbatore, 2002.
- [10] Smets. S. P., The degree of belief in a fuzzy event, Information Sciences 25 (1981), 1-19.
- [11] Sugeno. M., An introductory survey of fuzzy control, Information Sciences 36 (1958), 59–83.
- [12] Thangaraj. G. and Balasubramanian. G., On fuzzy basically disconnected spaces, J. Fuzzy. Math. 9 (2001), 103–110.
- [13] Tomaz Kubiak, L-Fuzzy normal spaces and Tietze extension theorem, J. Math. Anal. Appl. 25 (1987), 141–153.
- [14] Zadeh. L. A., Fuzzy Sets, Information and Control 8 (1965), 338-353.

M. SUDHA DEPARTMENT OF MATHEMATICS SRI SARADA COLLEGE FOR WOMEN, SALEM-16 TAMIL NADU, INDIA *E-mail address*: sudhaslm050yahoo.com

E.Roja Department of Mathematics Sri Sarada College for Women, Salem-16 Tamil Nadu, India

E.Roja Department of Mathematics Sri Sarada College for Women, Salem-16 Tamil Nadu, India