DOI QR코드

DOI QR Code

COMMON FIXED POINT THEOREMS FOR TWO MAPPINGS IN $\mathcal{M}$-FUZZY METRIC SPACES

  • Sedghi, Shaban (Department of Mathematics Islamic Azad University-Qaemshahr Branch) ;
  • Im, Jung-Hwa (Department of Mathematics Education Gyeongsang National University) ;
  • Shob, Nabi (Department of Mathematics Islamic Azad University-Babol Branch)
  • Received : 2009.11.21
  • Accepted : 2011.02.14
  • Published : 2011.05.31

Abstract

In this paper, we prove some common fixed point theorem for two nonlinear mappings in complete $\mathcal{M}$-fuzzy metric spaces. Our main results improved versions of several fixed point theorems in complete fuzz metric spaces.

Keywords

References

  1. B. C. Dhage, A Study of Some Fixed Point Theorems, Ph. D. Thesis, Marathwads University, Aurangabad, India, 1984.
  2. B. C. Dhage, Generalised metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc. 84 (1992), 329-336.
  3. M. S. El-Naschie, On the uncertainty of Cantorian geometry and two-slit experiment, Chaos, Solitons and Fractals 9 (1998), 517-529. https://doi.org/10.1016/S0960-0779(97)00150-1
  4. M. S. El-Naschie, A review of E-infinity theory and the mass spectrum of high energy particle physics, Chaos, Solitons and Fractals 19 (2004), 209-236. https://doi.org/10.1016/S0960-0779(03)00278-9
  5. M. S. El-Naschie, On a fuzzy Kahler-like Manifold which is consistent with two-slit experiment, Intwenat. J. Nonlinear Sci. and Numer. Simul. 6 (2005), 95-98.
  6. M. S. El-Naschie, The idealized quantum two-slit gedanken experiment revisited-criticism and reinterpretation, Chaos, Solitons and Fractals 27 (2006), 9-13. https://doi.org/10.1016/j.chaos.2005.05.010
  7. J. X. Fang, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 46 (1992), 107-113. https://doi.org/10.1016/0165-0114(92)90271-5
  8. A. George and P. Veeramani, On some result in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
  9. J. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145-174. https://doi.org/10.1016/0022-247X(67)90189-8
  10. V. Gregori and A. Sapena, On fixed-point theorem in fuzzy metric spaces, Fuzzy Sets and Systems 125 (2002), 245-252. https://doi.org/10.1016/S0165-0114(00)00088-9
  11. I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326-334.
  12. D. Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems 144 (2004), 431-439. https://doi.org/10.1016/S0165-0114(03)00305-1
  13. S. V. R. Naidu, K. P. R. Rao and N. S. Rao, On the topology of D-metric spaces and the generation of D-metric spaces from metric spaces, Internat. J. Math. Math. Sci. 2004(2004), 2719-2740. https://doi.org/10.1155/S0161171204311257
  14. S. V. R. Naidu, K. P. R. Rao and N. S. Rao, On the concepts of balls in a D-metric space, Internat. J. Math. Math. Sci. 12 (2005), 133-141.
  15. S. V. R. Naidu, K. P. R. Rao and N. S. Rao, On convergent sequences and fixed point theorems in D-Metric spaces, Internat. J. Math. Math. Sci. 12 (2005), 1969-1988.
  16. B. E. Rhoades, A fixed point theorem for generalized metric spaces, Internat. J. Math. Math. Sci. 19 (1996), 145-153. https://doi.org/10.1155/S016117129600021X
  17. J. R. Lopez and S. Ramaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems 147 (2004), 273-283. https://doi.org/10.1016/j.fss.2003.09.007
  18. R. Saadati R, A. Razani and H. Adibi, A common fixed point theorem in L-fuzzy metric spaces, Chaos, Solitons and Fractals, doi:10.1016/j.chaos.2006.01.23.
  19. R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals 27 (2006), 331-344. https://doi.org/10.1016/j.chaos.2005.03.019
  20. B. Schweizer, H. Sherwood and R. M. Tardiff, Contractions on PM-space examples and counterexamples, Stochastica 1 (1988), 5-17.
  21. S. Sedghi, K. P. R. Rao and N. Shobe, A related fixed point theorems in three M-fuzzy metric spaces, Southeast Asian Bull. Math. 33 (2009), 115-132.
  22. B. Singh and R. K. Sharma, Common fixed points via compatible maps in D-metric spaces, Rad. Mat. 11 (2002), 145-153.
  23. G. Song, Comments on "A common fixed point theorem in a fuzzy metric spaces", Fuzzy Sets and Systems 135 (2003), 409-413. https://doi.org/10.1016/S0165-0114(02)00131-8
  24. Y. Tanaka, Y. Mizno and T. Kado, Chaotic dynamics in Friedmann equation, Chaos, Solitons and Fractals 24 (2005), 407-422. https://doi.org/10.1016/j.chaos.2004.09.034
  25. R. Vasuki, Common fixed points for R-weakly commuting maps in fuzzy metric spaces, Indian J. Pure Appl. Math. 30 (1999), 419-423.
  26. R. Vasuki and P. Veeramani, Fixed point theorems and Cauchy sequences in fuzzy metric spaces, Fuzzy Sets and Systems 135(2003), 409-413. https://doi.org/10.1016/S0165-0114(02)00131-8
  27. L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X