References
- B. C. Dhage, A Study of Some Fixed Point Theorems, Ph. D. Thesis, Marathwads University, Aurangabad, India, 1984.
- B. C. Dhage, Generalised metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc. 84 (1992), 329-336.
- M. S. El-Naschie, On the uncertainty of Cantorian geometry and two-slit experiment, Chaos, Solitons and Fractals 9 (1998), 517-529. https://doi.org/10.1016/S0960-0779(97)00150-1
- M. S. El-Naschie, A review of E-infinity theory and the mass spectrum of high energy particle physics, Chaos, Solitons and Fractals 19 (2004), 209-236. https://doi.org/10.1016/S0960-0779(03)00278-9
- M. S. El-Naschie, On a fuzzy Kahler-like Manifold which is consistent with two-slit experiment, Intwenat. J. Nonlinear Sci. and Numer. Simul. 6 (2005), 95-98.
- M. S. El-Naschie, The idealized quantum two-slit gedanken experiment revisited-criticism and reinterpretation, Chaos, Solitons and Fractals 27 (2006), 9-13. https://doi.org/10.1016/j.chaos.2005.05.010
- J. X. Fang, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 46 (1992), 107-113. https://doi.org/10.1016/0165-0114(92)90271-5
- A. George and P. Veeramani, On some result in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
- J. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145-174. https://doi.org/10.1016/0022-247X(67)90189-8
- V. Gregori and A. Sapena, On fixed-point theorem in fuzzy metric spaces, Fuzzy Sets and Systems 125 (2002), 245-252. https://doi.org/10.1016/S0165-0114(00)00088-9
- I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326-334.
- D. Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems 144 (2004), 431-439. https://doi.org/10.1016/S0165-0114(03)00305-1
- S. V. R. Naidu, K. P. R. Rao and N. S. Rao, On the topology of D-metric spaces and the generation of D-metric spaces from metric spaces, Internat. J. Math. Math. Sci. 2004(2004), 2719-2740. https://doi.org/10.1155/S0161171204311257
- S. V. R. Naidu, K. P. R. Rao and N. S. Rao, On the concepts of balls in a D-metric space, Internat. J. Math. Math. Sci. 12 (2005), 133-141.
- S. V. R. Naidu, K. P. R. Rao and N. S. Rao, On convergent sequences and fixed point theorems in D-Metric spaces, Internat. J. Math. Math. Sci. 12 (2005), 1969-1988.
- B. E. Rhoades, A fixed point theorem for generalized metric spaces, Internat. J. Math. Math. Sci. 19 (1996), 145-153. https://doi.org/10.1155/S016117129600021X
- J. R. Lopez and S. Ramaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems 147 (2004), 273-283. https://doi.org/10.1016/j.fss.2003.09.007
- R. Saadati R, A. Razani and H. Adibi, A common fixed point theorem in L-fuzzy metric spaces, Chaos, Solitons and Fractals, doi:10.1016/j.chaos.2006.01.23.
- R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals 27 (2006), 331-344. https://doi.org/10.1016/j.chaos.2005.03.019
- B. Schweizer, H. Sherwood and R. M. Tardiff, Contractions on PM-space examples and counterexamples, Stochastica 1 (1988), 5-17.
- S. Sedghi, K. P. R. Rao and N. Shobe, A related fixed point theorems in three M-fuzzy metric spaces, Southeast Asian Bull. Math. 33 (2009), 115-132.
- B. Singh and R. K. Sharma, Common fixed points via compatible maps in D-metric spaces, Rad. Mat. 11 (2002), 145-153.
- G. Song, Comments on "A common fixed point theorem in a fuzzy metric spaces", Fuzzy Sets and Systems 135 (2003), 409-413. https://doi.org/10.1016/S0165-0114(02)00131-8
- Y. Tanaka, Y. Mizno and T. Kado, Chaotic dynamics in Friedmann equation, Chaos, Solitons and Fractals 24 (2005), 407-422. https://doi.org/10.1016/j.chaos.2004.09.034
- R. Vasuki, Common fixed points for R-weakly commuting maps in fuzzy metric spaces, Indian J. Pure Appl. Math. 30 (1999), 419-423.
- R. Vasuki and P. Veeramani, Fixed point theorems and Cauchy sequences in fuzzy metric spaces, Fuzzy Sets and Systems 135(2003), 409-413. https://doi.org/10.1016/S0165-0114(02)00131-8
- L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X