References
- Ya. I. Alber and A. N. Iusem, Extension of subgradient techniques for nonsmooth opti- mization in Banach spaces, Set-valued Anal. 9 (2001), no. 4, 315-335. https://doi.org/10.1023/A:1012665832688
- Y. Alber, S. Reich, and J. C. Yao, Iterative methods for solving fixed-point problems with nonself-mappings in Banach spaces, Abstr. Appl. Anal. 2003 (2003), no. 4, 193-216. https://doi.org/10.1155/S1085337503203018
- A. Bnouhachem, M. A. Noor, and Z. Hao, Some new extragradient iterative methods for variational inequalities, Nonlinear Anal. 70 (2009), no. 3, 1321-1329. https://doi.org/10.1016/j.na.2008.02.014
- F. E. Browder, Fixed point theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1272-1276. https://doi.org/10.1073/pnas.53.6.1272
- F. E. Browder, Nonlinear monotone operators and convex sets in Banach spaces, Bull. Amer. Math. Soc. 71 (1965), 780-785. https://doi.org/10.1090/S0002-9904-1965-11391-X
- F. E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177 (1968), 283-301. https://doi.org/10.1007/BF01350721
- F. E. Browder and W. E. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228. https://doi.org/10.1016/0022-247X(67)90085-6
- R. E. Bruck, On the weak convergence of an ergodic iteration for the solution of vari- ational inequalities for monotone operators in Hilbert space, J. Math. Anal. Appl. 61 (1977), no. 1, 159-164. https://doi.org/10.1016/0022-247X(77)90152-4
- B. Halpen, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967), 957- 961. https://doi.org/10.1090/S0002-9904-1967-11864-0
- Z. Huang and M. A. Noor, Some new unified iteration schemes with errors for nonex- pansive mappings and variational inequalities, Appl. Math. Comput. 194 (2007), no. 1, 135-142. https://doi.org/10.1016/j.amc.2007.04.056
- H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005), no. 3, 341-350. https://doi.org/10.1016/j.na.2003.07.023
- M. A. Noor, Some developments in general variational inequalities, Appl. Math. Com- put. 152 (2004), no. 1, 199-277. https://doi.org/10.1016/S0096-3003(03)00558-7
- M. A. Noor, General variational inequalities and nonexpansive mappings, J. Math. Anal. Appl. 331 (2007), no. 2, 810-822. https://doi.org/10.1016/j.jmaa.2006.09.039
- M. A. Noor and A. Bnouhachem, On an iterative algorithm for general variational inequalities, Appl. Math. Comput. 185 (2007), no. 1, 155-168. https://doi.org/10.1016/j.amc.2006.07.018
- M. A. Noor and Z. Huang, Three-step methods for nonexpansive mappings and varia- tional inequalities, Appl. Math. Comput. 187 (2007), no. 2, 680-685. https://doi.org/10.1016/j.amc.2006.08.088
- M. A. Noor and Z. Huang, Wiener-Hopf equation technique for variational inequalities and nonexpansive mappings, Appl. Math. Comput. 191 (2007), no. 2, 504-510. https://doi.org/10.1016/j.amc.2007.02.117
- X. Qin, S. Y. Cho, and S. M. Kang, Convergence of an iterative algorithm for systems of variational inequalities and nonexpansive mappings with applications, J. Comput. Appl. Math. 233 (2009), no. 2, 231-240. https://doi.org/10.1016/j.cam.2009.07.018
- X. Qin and M. A. Noor, General Wiener-Hopf equation technique for nonexpansive mappings and general variational inequalities in Hilbert spaces, Appl. Math. Comput. 201 (2008), no. 1-2, 716-722. https://doi.org/10.1016/j.amc.2008.01.007
- S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal Appl. 75 (1980), no. 1, 287-292. https://doi.org/10.1016/0022-247X(80)90323-6
- S. Reich, Approximating zeros of accretive operators, Proc. Amer. Math. Soc. 51 (1975), no. 2, 381-384. https://doi.org/10.1090/S0002-9939-1975-0470762-1
- B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), no. 4, 2683-2693. https://doi.org/10.1016/S0362-546X(01)00388-1
- Y. Song and R. Chen, Convergence theorems of iterative algorithms for continuous pseudocontractive mappings, Nonlinear Anal. 67 (2007), no. 2, 486-497. https://doi.org/10.1016/j.na.2006.06.009
- Y. Song and R. Chen, Strong convergence theorems on an iterative method for a family of finite non- expansive mappings, Appl. Math. Comput. 180 (2006), no. 1, 275-287. https://doi.org/10.1016/j.amc.2005.12.013
- Y. Song and R. Chen, Viscosity approximation methods for nonexpansive nonself-mappings, J. Math. Anal. Appl. 321 (2006), no. 1, 316-326. https://doi.org/10.1016/j.jmaa.2005.07.025
- Y. Song and R. Chen, Iterative approximation to common fixed points of nonexpansive mapping se- quences in re exive Banach spaces, Nonlinear Anal. 66 (2007), no. 3, 591-603. https://doi.org/10.1016/j.na.2005.12.004
- Y. Song, R. Chen, and H. Zhou, Viscosity approximation methods for nonexpansive mapping sequences in Banach spaces, Nonlinear Anal. 66 (2007), no. 5, 1016-1024. https://doi.org/10.1016/j.na.2006.01.001
- G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris 258 (1964), 4413-4416.
- T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one- parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. 305 (2005), no. 1, 227-239. https://doi.org/10.1016/j.jmaa.2004.11.017
- W. Takahashi, Nonlinear variational inequalities and fixed point theorems, J. Math. Soc. Japan 28 (1976), no. 1, 168-181. https://doi.org/10.2969/jmsj/02810168
- W. Takahashi,, Nonlinear complementarity problem and systems of convex inequalities, J. Op- tim. Theory Appl. 24 (1978), no. 3, 499-506. https://doi.org/10.1007/BF00932892
- W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), no. 2, 417-428. https://doi.org/10.1023/A:1025407607560