References
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- R. Badora, On approximate derivations, Math. Inequal. Appl. 9 (2006), no. 1, 167-173.
-
J.-H. Bae and W.-G. Park, Approximate bi-homomorphisms and bi-derivations in
$C^{\ast}$ - ternary algebras, Bull. Korean Math. Soc. 47 (2010), no. 1, 195-209. https://doi.org/10.4134/BKMS.2010.47.1.195 - M. Bresar, Commuting maps: a survey, Taiwanese J. Math. 8 (2004), no. 3, 361-397. https://doi.org/10.11650/twjm/1500407660
- S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64. https://doi.org/10.1007/BF02941618
- Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434. https://doi.org/10.1155/S016117129100056X
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias Stability of approximately ad- ditive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436. https://doi.org/10.1006/jmaa.1994.1211
- D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- D. H. Hyers, A remark on symmetric bi-additive functions having nonnegative diagonaliza- tion, Glas. Mat. Ser. III 15(35) (1980), 279-282.
- S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, Florida, 2001.
- Gy. Maksa, On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 6, 303-307.
- T. Miura, G. Hirasawa, and S.-E. Takahasi, A perturbation of ring derivations on Ba- nach algebras, J. Math. Anal. Appl. 319 (2006), no. 2, 522-530. https://doi.org/10.1016/j.jmaa.2005.06.060
- C. Park and J. S. An, Isomorphisms in quasi-Banach algebras, Bull. Korean Math. Soc. 45 (2008), no. 1, 111-118. https://doi.org/10.4134/BKMS.2008.45.1.111
-
C. Park and J. Hou, Homomorphisms between
$C^{\ast}$ - algebras associated with the Trif functional equation and linear derivations on$C^{\ast}$ - algebras, J. Korean Math. Soc. 41 (2004), no. 3, 461-477. https://doi.org/10.4134/JKMS.2004.41.3.461 -
J. M. Rassias and H.-M. Kim, Approximate homomorphisms and derivations between
$C^{\ast}$ -ternary algebras, J. Math. Phys. 49 (2008), no. 6, 10 pp. - Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- Th. M. Rassias (Ed.), "Functional Equations and Inequalities", Kluwer Academic, Dordrecht, Boston, London, 2000.
- P. Semrl, The functional equation of multiplicative derivation is superstable on standard operator algebras, Integral Equations Operator Theory 18 (1994), no. 1, 118-122. https://doi.org/10.1007/BF01225216
- S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, 1960.