DOI QR코드

DOI QR Code

RF 마그네트론 스퍼터링법으로 증착된 CdS 박막의 CdCl2 열처리 효과

Effects of CdCl2 Heat Treatment on the Qualities of CdS Thin Films Deposited by RF Magnetron Sputtering Technique

  • 최수영 (고려대학교 신소재공학과) ;
  • 천승주 (고려대학교 신소재공학과) ;
  • 정영훈 (고려대학교 화학공학과) ;
  • 이승훈 (고려대학교 신소재공학과) ;
  • 배수현 (고려대학교 신소재공학과) ;
  • 탁성주 (고려대학교 신소재공학과) ;
  • 김지현 (고려대학교 화학공학과) ;
  • 김동환 (고려대학교 신소재공학과)
  • Choi, Su-Young (Department of Materials Science and Engineering, Korea University) ;
  • Chun, Seung-Ju (Department of Materials Science and Engineering, Korea University) ;
  • Jung, Young-Hun (Department of Chemical & Biological Engineering, Korea University) ;
  • Lee, Seung-Hun (Department of Materials Science and Engineering, Korea University) ;
  • Bae, Soo-Hyun (Department of Materials Science and Engineering, Korea University) ;
  • Tark, Sung-Ju (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Ji-Hyun (Department of Chemical & Biological Engineering, Korea University) ;
  • Kim, Dong-Hwan (Department of Materials Science and Engineering, Korea University)
  • 투고 : 2011.07.19
  • 심사 : 2011.08.12
  • 발행 : 2011.09.27

초록

The CdS thin film used as a window layer in the CdTe thin film solar cell transports photo-generated electrons to the front contact and forms a p-n junction with the CdTe layer. This is why the electrical, optical, and surface properties of the CdS thin film influence the efficiency of the CdTe thin film solar cell. When CdTe thin film solar cells are fabricated, a heat treatment is done to improve the qualities of the CdS thin films. Of the many types of heat treatments, the $CdCl_2$ heat treatment is most widely used because the grain size in CdS thin films increases and interdiffusion between the CdS and the CdTe layer is prevented by the heat treatment. To investigate the changes in the electrical, optical, and surface properties and the crystallinity of the CdS thin films due to heat treatment, CdS thin films were deposited on FTO/glass substrates by the rf magnetron sputtering technique, and then a $CdCl_2$ heat treatment was carried out. After the $CdCl_2$ heat treatment, the clustershaped grains in the CdS thin film increased in size and their boundaries became faint. XRD results show that the crystallinity improved and the crystalline size increased from 15 to 42 nm. The resistivity of the CdS single layer decreased from 3.87 to 0.26 ${\Omega}cm$, and the transmittance in the visible region increased from 64% to 74%.

키워드

참고문헌

  1. S. A Ringel, A. W. Smith, M. H. MacDougal and A. Rohatgi, J. Appl. Phys., 70(2), 881 (1991). https://doi.org/10.1063/1.349652
  2. K. Mitchell, A. L. Fahrenbruch and R. H. Bube, J. Appl. Phys., 48, 829 (1977). https://doi.org/10.1063/1.323636
  3. V. Komin, B. Tetali, V. Viswanathan, S. Yu, D. L. Morel and C. S. Ferekides, Thin Solid Films, 431-432, 143 (2003). https://doi.org/10.1016/S0040-6090(03)00200-1
  4. M. Tsuji, T. Aramoto, H. Ohyama, T. Hibino and K. Omura, J. Cryst. Growth, 214-215, 1142 (2000). https://doi.org/10.1016/S0022-0248(00)00291-8
  5. S. Mathew, P. S. Mukerjee and K. P. Vijayakumar, Thin Solid Films, 254, 278 (1995). https://doi.org/10.1016/0040-6090(94)06257-L
  6. X. Wu, Solar Energy, 77, 803 (2004). https://doi.org/10.1016/j.solener.2004.06.006
  7. K. Senthil, D. Mangalaraj, Sa. K. Narayandass and S. Adachi, Mater. Sci. Eng. B, 78, 53 (2000). https://doi.org/10.1016/S0921-5107(00)00510-9
  8. I. M. de la Plaza, G. Gonzalez-Diaz, F. Sanchez-Quesada, M. Rodríguez-Vidal, Thin Solid Films, 120, 31 (1984). https://doi.org/10.1016/0040-6090(84)90170-6
  9. A. D. Compaan, A. Gupta, J. Drayton, S. -H. Lee and S. Wang, Phys. Status Solidi B, 241, 779 (2004). https://doi.org/10.1002/pssb.200304281
  10. H. El Maliki, J. C. Bernède, S. Marsillac, J. Pinel, X. Castel and J. Pouzet, Appl. Surf. Sci., 205, 65 (2003). https://doi.org/10.1016/S0169-4332(02)01082-6
  11. C. -S. Son, Kor. J. Mater. Res., 21, 202 (2011) (in Korean). https://doi.org/10.3740/MRSK.2011.21.4.202
  12. J. Lee and D. -J. Lee, Thin Solid Films, 515, 6055 (2007). https://doi.org/10.1016/j.tsf.2006.12.069
  13. Z. Bai, L. Wan, Z. Hou and D. Wang, Phys. Status Solidi C, 8, 628 (2011). https://doi.org/10.1002/pssc.201000445
  14. J. Lee, Appl. Surf. Sci., 252, 1398 (2005). https://doi.org/10.1016/j.apsusc.2005.02.110
  15. L. Escosura, E. Garcia-Camarero, F. Arjona and F. Rueda, Sol. Cell, 11, 211 (1984). https://doi.org/10.1016/0379-6787(84)90011-5
  16. A. L. Patterson, Phys. Rev., 56(10), 978 (1939). https://doi.org/10.1103/PhysRev.56.978
  17. J. A. Akintunde, J. Mater. Sci. Mater. Electron., 11, 503 (2000). https://doi.org/10.1023/A:1008920602583
  18. M. Altosaar, K. Ernits, J. Krustok, T. Varema, J. Raudoja and E. Mellikov, Thin Solid Films, 480-481, 147 (2005). https://doi.org/10.1016/j.tsf.2004.11.022
  19. O. Vigil-Galan, J. Vidal-Larramendi, A. Escamilla-Esquivel, G. Contreras-Puente, F. Cruz-Gandarilla, G. Arriaga-Mejía, M. Chavarria-Castaneda and M. Tufino-Velazq, Phys. Status Solidi, 203, 2018 (2006). https://doi.org/10.1002/pssa.200522175
  20. S. Kwon, J. Yi, S. Yoon, J. S. Lee and D. Kim, Current Applied Physics, 9, 1310 (2009). https://doi.org/10.1016/j.cap.2008.12.014
  21. R. K. Sharma, K. Jain and A. C. Rastogi, Current Applied Physics, 3, 199 (2003). https://doi.org/10.1016/S1567-1739(02)00201-8
  22. D. M. Carballeda-Galicia, R. Castanedo-Perez, O. Jimenez- Sandoval, S. Jimenez-Sandoval, G. Torres-Delgado and C. I. Zuniga-Romero, Thin Solid Film, 371, 105 (2000). https://doi.org/10.1016/S0040-6090(00)00987-1