DOI QR코드

DOI QR Code

Synthesis and Characterization of Bis-Thienyl-9,10-anthracenes Containing Electron Withdrawing 2-Cyanoacrylic Acid or 2-Methylenemalononitrile Group

  • Wang, Yuan (Chemistry and Chemical Engineering, Harbin Normal University) ;
  • Yu, Qu Feng (Chemistry and Chemical Engineering, Harbin Normal University) ;
  • Park, Hea-Jung (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Ryu, Suk-Hwa (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Choi, Jung-Hei (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Yoon, Ung-Chan (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • Received : 2011.02.17
  • Accepted : 2011.06.20
  • Published : 2011.08.20

Abstract

A series of new bis-thienylanthracene derivatives D1~D5 containing 9,10-antharcene moiety in the center and 2-methylenemalonotitrile or 2-cyanoacrylic acid functional group on the terminal thiophenes were synthesized and characterized by $^1H$-NMR and high-resolution mass spectroscopy. Their optical, electrochemical, and thermal properties were measured. They have absorption ${\lambda}_{max}$ in the range of 437~480 nm and max of $7.4{\times}10^3{\sim}2.0{\times}10^4M^{-1}cm^{-1}$. The substitution of 2-cyanoacrylic acid group allows greater value of ${\varepsilon}_{max}$ than that of 2-methylenemalonotitrile. TGA curves showed that D4 and D5 which have 2-cyanoacrylic acid functional group on the terminal thiophene(s) exhibit good thermal stability and D4 was thermally stable up to $400^{\circ}C$. Their optical properties and LUMO energy levels measured suggest that they can serve as potential candidates for electron donor materials of organic photovoltaic cells (OPVs) or D4 and D5 which contain 2-cyanoacrylic acid group can be used as organic dyes of dye-sensitized solar cells (DSSCs).

Keywords

References

  1. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992, 258, 1474. https://doi.org/10.1126/science.258.5087.1474
  2. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789. https://doi.org/10.1126/science.270.5243.1789
  3. Kang, M. S.; Oh, J. B.; Roh, S. G.; Kim, M.-R.; Lee, J. K.; Jin, S.-H.; Kim, H. K. Bull. Korean Chem. Soc. 2007, 28, 33. https://doi.org/10.5012/bkcs.2007.28.1.033
  4. Robertson, N. Angew. Chem. Int. Ed. 2006, 45, 2338. https://doi.org/10.1002/anie.200503083
  5. Hamann, T. W.; Jensen, R. A.; Martinson, A. B. F.; Van Ryswyk, H.; Hupp, J. T. Energy Environ. Sci. 2008, 6, 66.
  6. Chen, Z.; Li, F.; Huang, C. Curr. Org. Chem. 2007, 11, 1241. https://doi.org/10.2174/138527207781696008
  7. Kalaignan, G. P.; Y. S. Kang, Y. S. J. Photochem. Photobiol. C.Photochem. Rev. 2006, 7, 17. https://doi.org/10.1016/j.jphotochemrev.2006.03.003
  8. Gratzel, M. MRS Bulletin 2005, 30, 23. https://doi.org/10.1557/mrs2005.4
  9. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539. https://doi.org/10.1038/347539a0
  10. Lee, W. L.; An, J.-G.; Yoon, H.-K.; Jang, H.; Kim, N. G.; Do, Y. Bull. Korean Chem. Soc. 2005, 26, 1569. https://doi.org/10.5012/bkcs.2005.26.10.1569
  11. Horowitz, G. Adv. Mater. 1998, 10, 365. https://doi.org/10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
  12. Katz, H. E.; Lovinger, A. J.; Johnson, J.; Kloc, C.; Siegrist, T.; Li, W.; Lin, Y. Y.; Dodabalapur, A. Nature 2000, 404, 478. https://doi.org/10.1038/35006603
  13. Rogers, J. A.; Bao, Z. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 3327. https://doi.org/10.1002/pola.10405
  14. Reyes-Reyes, M.; Kim, K.; Carroll, D. L. Appl. Phys. Lett. 2005, 87, 083506. https://doi.org/10.1063/1.2006986
  15. Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864. https://doi.org/10.1038/nmat1500
  16. Bader, M. M.; Custelcean, R.; Ward, M. D. Chem. Mater. 2003, 15, 616. https://doi.org/10.1021/cm025628i
  17. Fraxedas, J. Adv. Mater. 2002, 14, 1603. https://doi.org/10.1002/1521-4095(20021118)14:22<1603::AID-ADMA1603>3.0.CO;2-5
  18. Zhang, Q. T.; Tour, J. M. J. Am. Chem. Soc. 1998, 120, 5355. https://doi.org/10.1021/ja972373e
  19. Mullekom, H. A. M. v.; Vekemans, J. A. J. M.; Havinga, E. E.; Meijer, E. W. Mater. Sci. Eng., R. 2001, 32, 1. https://doi.org/10.1016/S0927-796X(00)00029-2
  20. Ajayaghosh, A. Chem. Soc. Rev. 2003, 32, 181. https://doi.org/10.1039/b204251g
  21. Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. 2006, 18, 789. https://doi.org/10.1002/adma.200501717
  22. Thompson, B. C.; Kim, Y. G.; Reynolds, J. R. Macromolecules 2005, 38, 5359. https://doi.org/10.1021/ma0505934
  23. Koster, L. J. A.; Mihailetchi, V. D.; Blom, P. W. M. Appl. Phys. Lett. 2006, 88, 093511. https://doi.org/10.1063/1.2181635
  24. de Leeuw, D. M.; Simenon, M. M. J.; Brown, A. R.; Einhard, R. E. F. Synth. Met. 1997, 87, 53-59. https://doi.org/10.1016/S0379-6779(97)80097-5
  25. Choulis, S. A.; Nelson, J.; Kim, Y.; Poplavskyy, D.; Kreouzis, T.; Durrant, J. R.; Bradley, D. D. C. Appl. Phys. Lett. 2003, 83, 3812. https://doi.org/10.1063/1.1624636
  26. Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99. https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
  27. Choi, J. H.; Cho, D. W.; Jin, S. H.; U. C. Yoon, Bull. Korean Chem. Soc. 2007, 28(7), 1175 https://doi.org/10.5012/bkcs.2007.28.7.1175
  28. Choi, J. H.; Cho, D. W.; Sung, N. K.; Jin, S. H.; U. C. Yoon, Bull. Korean Chem. Soc. 2007, 28(11), 1931. https://doi.org/10.5012/bkcs.2007.28.11.1931
  29. J. T. Pinhey, E. G. Roche, J. Chem. Soc. Perkin Trans. 1988, 1, 2415.