DOI QR코드

DOI QR Code

Synthesis and Characterization of Novel Hydrogenated Poly(norbornene bisimide)s Prepared from Ring Opening Metathesis Polymerization

  • Received : 2011.03.25
  • Accepted : 2011.06.17
  • Published : 2011.08.20

Abstract

We synthesized three novel poly(norbornene bisimide)s by ring opening metathesis polymerization (ROMP) and subsequent hydrogenation. Their thermal, mechanical and optical properties were investigated with TGA, DMA, UV-Vis spectrometer, and optical reflectometer. The new polymers showed high glass transition temperatures over $260^{\circ}C$ and good thermal stability with 5% wt-loss temperature higher than $390^{\circ}C$. When solvent casted, they yielded optically transparent and dimensionally stable films with a relatively low coefficient of thermal expansion of about 50 ppm $K^{-1}$. Therefore, the bisimide moieties substantially enhanced thermal and dimensional stabilities, as compared with normal ROMP-prepared polynorbornene films. Though the water uptake was increased to 0.6 wt-%, this water uptake is still considerably lower than that for polyethersulfones (1.4 wt-%) or polyimides (2.0 wt-%). Hence, the new poly(norbornene bisimide)s may become attractive candidates for flexible substrates of optoelectronic devices such as displays and photovoltaic solar cells.

Keywords

References

  1. Choi, M-C.; Kim, Y.; Ha, C-S. Prog. Polym. Sci. 2008, 33, 581 https://doi.org/10.1016/j.progpolymsci.2007.11.004
  2. Ito. H.; Oka, W.; Goto, H.; Umeda, H. Jpn. J. App. Phys. 2006, 45, 4325 https://doi.org/10.1143/JJAP.45.4325
  3. Contreras, A. P.; Tlenkopachev, M. A.; Lopez-Gonzalez, M. del M.; Riande, E. Macromolecules 2002, 35, 4677 https://doi.org/10.1021/ma011959p
  4. Tlenkopatchev, M. A.; Vargas, J.; Lopez-Gonzalez, M. del. M.; Riande, E. Macromolecules 2003, 36, 8483 https://doi.org/10.1021/ma030285a
  5. Miyaki, N.; Miyamoto, Y.; Yoshida, S.; Hashiguchi, Y. Japanese Patent, JP-P-2002-00331040, 2002
  6. Nedaya, E.; Ninmann, R. L. J. Org. Chem. 1966, 31, 1317 https://doi.org/10.1021/jo01343a002
  7. Augustin, M.; Reinemann, R. Z. Chem. 1973, 13, 61
  8. Kas'yan, L. I.; Tarabara, I. N.; Bondarenko, Ya. S.; Svyatenko, L. K.; Bondarenko, A. V. Russ. J. Org. Chem. 2007, 43, 1014 https://doi.org/10.1134/S1070428007070135
  9. Mol. J. C. J. Mol. Catal. A. Chem. 2004, 213, 39 https://doi.org/10.1016/j.molcata.2003.10.049
  10. Yamazaki, M. J. Mol. Catal. A. Chem. 2004, 213, 81 https://doi.org/10.1016/j.molcata.2003.10.058
  11. Yoshida, Y.; Goto, K.; Komiya, Z. J. Appl. Polym. Sci. 1997, 66, 367 https://doi.org/10.1002/(SICI)1097-4628(19971010)66:2<367::AID-APP17>3.0.CO;2-V
  12. Asrar, J. Macromolecules 1992, 25, 5150 https://doi.org/10.1021/ma00046a006
  13. Rule, J. D.; Moore, J. S. Macromolecules 2002, 35, 7878 https://doi.org/10.1021/ma0209489
  14. Lapinte, V.; Brosse, J-C.; Fontaine, L. Macromol. Chem. Phys. 2004, 205, 824 https://doi.org/10.1002/macp.200300120
  15. Castner, K. F.; Calderon, N. J. Mol. Catal. 1982, 15, 47 https://doi.org/10.1016/0304-5102(82)80004-7
  16. Kas'yan, L. I.; Tarabara, I. N.; Bondarenko, Ya. S.; Shishkina, S. V.; Shishkin, O. V.; Musatov, V. I. Russ. J. Org. Chem. 2005, 41, 1122 https://doi.org/10.1007/s11178-005-0305-9
  17. Conley, N. R.; Hung, R. J.; Willson, C. G. J. Org. Chem. 2005, 70, 4553 https://doi.org/10.1021/jo048031q
  18. Liu, Z.; Yuan, Q. Appl. Rad. Isotope. 2006, 64, 760 https://doi.org/10.1016/j.apradiso.2006.01.006
  19. Flitsch, W.; Kramer, U.; Zimmerman, H. Chem. Ber. 1969, 102, 3268 https://doi.org/10.1002/cber.19691021005
  20. Lee, G. E.; Heffner, R. J. United States Patent, No. 4,720,553, 1988
  21. Dey, S. K.; Lightner, D. A. J. Org. Chem. 2007, 72, 9395 https://doi.org/10.1021/jo7016789
  22. Heitz, W.; Krugel, S. A.; Madan, R.; Wendorff, J. H. Macromol. Chem. Phys. 1999, 200, 338 https://doi.org/10.1002/(SICI)1521-3935(19990201)200:2<338::AID-MACP338>3.0.CO;2-2
  23. Bielawski, C. W.; Grubbs, R. H. Prog. Polym. Sci. 2007, 32, 1 https://doi.org/10.1016/j.progpolymsci.2006.08.006
  24. Yoshida, Y.; Goto, K.; Komiya, Z. J. Appl. Polym. Sci. 1997, 66, 367 https://doi.org/10.1002/(SICI)1097-4628(19971010)66:2<367::AID-APP17>3.0.CO;2-V
  25. Morita, T.; Hiraike, H.; Toyoshima, K.; Higuchi, I. Japanese Patent, JP 2004-67984 A, 2004
  26. Yoshida, Y.; Yoshinari, M.; Ito, A.; Komiya, Z. Polym. J. 1998, 30, 819 https://doi.org/10.1295/polymj.30.819
  27. Drouin, S. D.; Zamanian, F.; Fogg, D. E. Organometallics 2001, 20, 5495 https://doi.org/10.1021/om010747d
  28. Camm, K. D.; Castro, N. M.; Liu, Y.; Czechura, P.; Snelgrove, J. L.; Fogg, D. E. J. Am. Chem. Soc. 2007, 129, 4168 https://doi.org/10.1021/ja071047o
  29. Mango, L. A.; Lenz, R. W. Makromol. Chem. 1973, 163, 13 https://doi.org/10.1002/macp.1973.021630102
  30. Hann, S. F. J. Polym. Sci. A: Polym. Chem. 1992, 30, 397 https://doi.org/10.1002/pola.1992.080300307

Cited by

  1. Biocatalytic Synthesis and Polymerization via ROMP of New Biobased Phenolic Monomers: A Greener Process toward Sustainable Antioxidant Polymers vol.5, pp.2296-2646, 2017, https://doi.org/10.3389/fchem.2017.00126
  2. Hydrogenation Process for Producing Light Petroleum Resins as Adhesive and Hot-Melt Components (Review) vol.57, pp.12, 2017, https://doi.org/10.1134/S0965544117120027
  3. Hydrogenation of petroleum resins in the presence of supported sulfide catalysts vol.58, pp.1, 2018, https://doi.org/10.1134/S0965544118010127
  4. Synthesis of thioether‐functional poly(olefin)s via ruthenium‐alkylidene initiated ring‐opening metathesis polymerization vol.57, pp.16, 2011, https://doi.org/10.1002/pola.29443