DOI QR코드

DOI QR Code

Influence of Lithium Ions on the Ion-coordinating Ruthenium Sensitizers for Nanocrystalline Dye-sensitized Solar Cells

  • Cho, Na-Ra (Department of Advanced Material Chemistry, Korea University) ;
  • Lee, Chi-Woo (Department of Advanced Material Chemistry, Korea University) ;
  • Cho, Dae-Won (Department of Advanced Material Chemistry, Korea University) ;
  • Kang, Sang-Ook (Department of Advanced Material Chemistry, Korea University) ;
  • Ko, Jae-Jung (Department of Advanced Material Chemistry, Korea University) ;
  • Nazeeruddin, Mohammad K. (Laboratory for Photonics and Interfaces, Swiss Federal Institute of Technology)
  • Received : 2011.01.05
  • Accepted : 2011.05.30
  • Published : 2011.08.20

Abstract

Ion-coordinating ruthenium complexes [cis-Ru(dcbpy)(L)(NCS)$_2$, where dcbpy is 4,4'-dicarboxylic acid-2,2'-bipyridine and L is 1,4,7,10-tetraoxa-13-azacyclopentadecane, JK-121, or bis(2-(2-methoxy-ethoxy)ethyl) amine, JK-122] have been synthesized and characterized using $^1H$ NMR, Fourier transform IR, UV/vis spectroscopy, and cyclic voltammetry. The effect of $Li^+$ in the electrolyte on the photovoltaic performance was investigated. With the stepwise addition of $Li^+$ to a liquid electrolyte, the device shows significant increase in the photo-current density, but a small decrease in the open circuit voltage. The solar cell with a hole conductor, the addition of $Li^+$ resulted in a 30% improvement in efficiency. The JK-121 sensitized cells in the liquid and solid-state electrolyte give power conversion efficiencies of 6.95% and 2.59%, respectively, under the simulated sunlight.

Keywords

References

  1. O'Regen, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  2. Hagfeldt, A.; Gratzel, M. Chem. Rev. 1995, 95, 49. https://doi.org/10.1021/cr00033a003
  3. Hagfeldt, A.; Gratzel, M. Acc. Chem. Res. 2000, 33, 269. https://doi.org/10.1021/ar980112j
  4. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Gratzel, M. J. Am. Chem. Soc. 2005, 127, 16835. https://doi.org/10.1021/ja052467l
  5. Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L. Jpn. J. Appl. Phys. Part 2 2006, 45, L638. https://doi.org/10.1143/JJAP.45.L638
  6. Gao, F.; Wang, Y.; Shi, D.; Zhang, J.; Wang, M.; Jing, X.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.;Gratzel, M. J. Am. Chem. Soc. 2008, 130, 10720. https://doi.org/10.1021/ja801942j
  7. Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. J. Am. Chem. Soc. 2003, 125, 475. https://doi.org/10.1021/ja027945w
  8. Clifford, J. N.; Yahioglu, G.; Milgrom, L.; R.; Durrant, J. R. Chem. Commun. 2002, 1260.
  9. Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. Chem. Commun. 2002, 1464.
  10. Brown, T. M.; Friend, R. H.; Millard, I. S.; Lacey, D. J.; Burroughes, J. H.; Cacialli, F. Appl. Phys. Lett. 2001, 79, 174. https://doi.org/10.1063/1.1383800
  11. Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. J. Am. Chem. Soc. 2003, 125, 574.
  12. Kruger, J.; Bach, V.; Gratzel, M. Adv. Mater. 2000, 12, 447. https://doi.org/10.1002/(SICI)1521-4095(200003)12:6<447::AID-ADMA447>3.0.CO;2-8
  13. Handa, S.; Haque, S. A.; Durrant, J. R. Adv. Funct. Mater. 2007, 17, 2878. https://doi.org/10.1002/adfm.200600871
  14. Satoh, N.; Nakashima, T.; Yamamoto, K. J. Am. Chem. Soc. 2005, 127, 13030. https://doi.org/10.1021/ja050765c
  15. Nakashima, T.; Satoh, N.; Albrecht, K.; Yamamoto, K. Chem. Mater. 2008, 20, 2538. https://doi.org/10.1021/cm703279u
  16. Jiang, K. -J.; Masaki, N.; Xia, J. -B.; Noda, S.; Yanagida, S. Chem. Commun. 2006, 2460.
  17. Gao, F.; Wang, Y.; Zhang, J.; Shi, D.; Wang, M.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Gratzel, M. Chem. Commun. 2008, 2635.
  18. Chen, C. -Y.; Wu, S. -J.; Wu, C. -G.; Chen, J. -G.; Ho, K. -C. Angew. Chem. Int. Ed. 2006, 45, 5822. https://doi.org/10.1002/anie.200601463
  19. Koumura, N.; Wang, Z. -S.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara, K. J. Am. Chem. Soc. 2006, 128, 14256. https://doi.org/10.1021/ja0645640
  20. Choi, H.; Baik, C.; Kang, S. O.; Ko, J.; Kang, M. -S.; Nazeeruddin, M. K.; Gratzel, M. Angew. Chem. Int. Ed. 2008, 47, 327. https://doi.org/10.1002/anie.200703852
  21. Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Gratzel, M. Chem. Mater. 2004, 16, 2694. https://doi.org/10.1021/cm049916l
  22. Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Moser, J. E.; Gratzel, M. Adv. Mater. 2003, 15, 2101. https://doi.org/10.1002/adma.200306084
  23. Nakade, S.; Kambe, S.; Kitamura, T.; Wada, Y.; Yanagida, S. J. Phys. Chem. B 2001, 105, 9150. https://doi.org/10.1021/jp011375p
  24. Lindstrom, H.; Sodergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindguist, S. -E. J. Phys. Chem. B 1997, 101, 7717. https://doi.org/10.1021/jp970490q
  25. Park, T.; Haque, S. A.; Potter, R. J.; Holmes, A. B.; Durrant, J. R. Chem. Commun. 2003, 2878.
  26. Haque, S. A.; Park, T.; Xu, C.; Koops, S.; Schulte, N.; Potter, R. J.; Holmes, A. B.; Durrant, J. R. Adv. Funct. Mater. 2004, 14, 435. https://doi.org/10.1002/adfm.200400043
  27. Hirata, N.; Kroeze, J. E.; Park, T.; Jones, D.; Haque, S. A.; Holmes, A. B.; Durrant, J. R. Chem. Commun. 2006, 535.
  28. Kroeze, J. E.; Hirata, N.; Schmidt-Mende, L.; Orizu, C.; Ogier, S. D.; Carr, K.; Gratzel, M.; Durrant, J. R. Adv. Funct. Mater. 2006, 16, 1832. https://doi.org/10.1002/adfm.200500748
  29. Snaith, H. J.; Zakeeruddin, S M.; Schmidt-Mende, L.; Klein, C.; Gratzel, M. Angew. Chem. Int. Ed. 2005, 44, 6413. https://doi.org/10.1002/anie.200502009
  30. Kuang, D.; Klein, C.; Snaith, H. J.; Moser, J. -E.; Humphry-Baker, R.; Comte, P.; Zakeeruddin, S. M.; Gratzel, M. Nano Lett. 2006, 6, 769. https://doi.org/10.1021/nl060075m
  31. Kuang, D.; Klein, C.; Ito, S.; Moser, J. -E.; Humphry-Baker, R.; Zakeeruddin, S. M.; Gratzel, M. Adv. Funct. Mater. 2007, 17, 154. https://doi.org/10.1002/adfm.200600483
  32. Beer, P. D.; Kocian, O.; Mortimer, R. J.; Ridgway, C. J. Chem. Soc. Chem. Commun. 1991, 1460.
  33. Ros-Lis, J. V.; Garcia, B.; Jimenez, D.; M-Manez, R.; Sancenon, F.; Soto, J.; Gonzalvo, F.; Valldecabres, M. C. J. Am. Chem. Soc. 2004, 126, 4064. https://doi.org/10.1021/ja031987i
  34. Bond, A. M.; Deacon, G. B.; Howitt, J.; MacFarlane, D. R.; Spiccia, L.; Wolfbauer, G. J. Electrochem. Soc. 1999, 146, 648. https://doi.org/10.1149/1.1391657
  35. Wang, P.; Zakeeruddin, S. M.; Moser, J. -E.; Gratzel, M. J. Phys. Chem. B 2003, 107, 13280. https://doi.org/10.1021/jp0355399
  36. Pelet, S.; Moser, J. E.; Gratzel, M. J. Phys. Chem. B 2000, 104, 1791. https://doi.org/10.1021/jp9934477
  37. Kuang, D.; Klein, C.; Snaith, H. J.; Moser, J.-E.; Humphry-Baker, R.; Comte, P.; Zakeerudin, S. M.; Gratzel, M. Nano. Lett. 2006, 6, 769. https://doi.org/10.1021/nl060075m
  38. Zahan, A.; Meier, A.; Gregg, B. A. J. Phys. Chem. B 1997, 101, 7985. https://doi.org/10.1021/jp971857u
  39. Kruger, J.; Plass, R.; Cevey, L.; Piccirelli, M.; Gratzel, M.; Bach, U. Appl. Phys. Lett. 2001, 79, 2085. https://doi.org/10.1063/1.1406148
  40. Schmidt-Mende, L.; Zakkeruddin, S. M.; Gratzel, M. Appl. Phys. Lett. 2005, 86, 013504 https://doi.org/10.1063/1.1844032

Cited by

  1. Influence of Ancillary Ligands in Dye-Sensitized Solar Cells vol.116, pp.16, 2016, https://doi.org/10.1021/acs.chemrev.5b00621
  2. Ruthenium complex dye with designed ligand capable of chelating triiodide anion for dye-sensitized solar cells vol.1, pp.10, 2011, https://doi.org/10.1039/c3ta01567j