DOI QR코드

DOI QR Code

Liquid Chromatographic Resolution of Vigabatrin and Its Analogue γ-Amino Acids on Chiral Stationary Phases Based on (3,3'-Diphenyl-1,1'-binaphthyl)-20-crown-6

  • Choi, Hee-Jung (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Cho, Hwan-Sun (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Lee, Su-Jin (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Hyun, Myung-Ho (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • Received : 2011.02.23
  • Accepted : 2011.05.03
  • Published : 2011.08.20

Abstract

Two chiral stationary phases (CSPs) based on (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 bonded covalently to silica gel were applied for the first time to the resolution of racemic vigabatrin and its analogue ${\gamma}$-amino acids and the resolution results were compared to those on the commercially available Crownpak CR(+) based on (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 coated dynamically onto octadecylsilica gel. While vigabatrin was not resolved at all on Crownpak CR(+), it was resolved quite well on the two CSPs. Among four vigabatrin analogue ${\gamma}$-amino acids, only two were resolved on Crownpak CR(+), but three were resolved on the CSP (CSP 1) containing residual silanol groups and all of four were resolved on the CSP (CSP 2) containing residual silanol group-protecting n-octyl groups. The improved lipophilicity in CSP 2 was proposed to be responsible for its superiority to CSP 1 for the resolution of vigabatrin and analogue ${\gamma}$-amino acids. In addition, the composition of aqueous mobile phase was found to affect the chiral recognition behaviors for the resolution of vigabatrin and analogue ${\gamma}$-amino acids on CSP 2.

Keywords

References

  1. Hyun, M. H. J. Sep.Sci. 2003, 26, 242. https://doi.org/10.1002/jssc.200390030
  2. Hyun, M. H. Bull. Kor. Chem. Soc. 2005, 26, 1153. https://doi.org/10.5012/bkcs.2005.26.8.1153
  3. Hyun, M. H. J. Sep.Sci. 2006, 29, 750. https://doi.org/10.1002/jssc.200500431
  4. Choi, H. J.; Hyun, M. H. J. Liq. Chromatogr. Rel. Technol. 2007, 30, 853. https://doi.org/10.1080/10826070701191136
  5. Hyun, M. H.; Han, S. C.; Lipshutz, B. H.; Shin, Y.-J.; Welch, C. J. J. Chromatogr. A 2001, 910, 359. https://doi.org/10.1016/S0021-9673(00)01230-9
  6. Choi, H. J.; Ha, H. J.; Han, S. C.; Hyun, M. H. Anal. Chim. Acta 2008, 619, 122. https://doi.org/10.1016/j.aca.2008.03.052
  7. Hyun, M. H.; Han, S. C.; Lipshutz, B. H.; Shin, Y.-J.; Welch, C. J. J. Chromatogr. A 2002, 959, 75. https://doi.org/10.1016/S0021-9673(02)00431-4
  8. Hyun, M. H.; Han, S. C. J. Biochem. Biophys. Methods 2002, 54, 235. https://doi.org/10.1016/S0165-022X(02)00117-3
  9. Hyun, M. H.; Min, H. J.; Cho, Y. J. J. Chromatogr. A 2003, 996, 233. https://doi.org/10.1016/S0021-9673(03)00540-5
  10. Hyun, M. H.; Tan, G.; Cho, Y. J. Biomed. Chromatogr. 2005, 19, 208. https://doi.org/10.1002/bmc.437
  11. Hyun, M. H.; Han, S. C.; Choi, H. J.; Kang, B. S.; Ha, H. J. J. Chromatogr. A 2007, 1138, 169. https://doi.org/10.1016/j.chroma.2006.10.048
  12. Choi, H. J.; Cho, H. S.; Han, S. C.; Hyun, M. H. J. Sep. Sci. 2009, 32, 536. https://doi.org/10.1002/jssc.200800610
  13. Choi, H. J.; Jin, J. S.; Hyun, M. H. Chirality 2009, 21, 11. https://doi.org/10.1002/chir.20582
  14. Choi, H. J.; Jin, J. S.; Hyun, M. H. J. Chromatogr. B 2008, 875, 102. https://doi.org/10.1016/j.jchromb.2008.05.047
  15. Walker, M. C.; Patsalos, P. N. Pharmacol. Ther. 1995, 67, 351. https://doi.org/10.1016/0163-7258(95)00021-6
  16. Meldrum, B. S.; Murugaiah, K. Eur. J. Pharmacol. 1983, 89, 149. https://doi.org/10.1016/0014-2999(83)90620-9
  17. Vermeij, T. A. C.; Edelbroek, P. M.; J. Chromatogr. B 1998, 716, 233.
  18. Haegele, K. D.; Schoun, J.; Alken, R. G.; Huebert, N. D. J. Chromatogr. 1983, 274, 103. https://doi.org/10.1016/S0378-4347(00)84413-8
  19. Schramm, T. M.; McKinnon, G. E.; Eadie, M. J. J. Chromatogr. Biomed. Appl. 1993, 616, 39. https://doi.org/10.1016/0378-4347(93)80469-K
  20. Zhao, S.; Zhang, R.; Wang, H.; Tang, L.; Pan, Y. J. Chromatogr. B 2006, 833, 186. https://doi.org/10.1016/j.jchromb.2006.01.018
  21. Lee, S. J; Cho, H. S.; Choi, H. J.; Hyun, M. H. J. Chromatogr. A 2008, 1188, 318. https://doi.org/10.1016/j.chroma.2008.02.102
  22. Al-Majed, A. A. J. Pharm. Biomed. Anal. 2009, 50, 96. https://doi.org/10.1016/j.jpba.2009.03.030
  23. Pataj, Z.; Ilisz, I.; Aranyi, A.; Forro, E.; Fulop, F.; Armstrong, D. W.; Peter, A. Chromatographia 2010, 71, S13. https://doi.org/10.1365/s10337-010-1484-2
  24. Walbroehl, Y.; Wagner, J. J. Chromatogr. A 1994, 685, 321. https://doi.org/10.1016/0021-9673(94)00722-5
  25. Instruction Manual for Crownpak CR(+), Daicel Chemical Industries.

Cited by

  1. Liquid chromatographic resolution of 3-amino-1,4-benzodiazepin-2-ones on crown ether-based chiral stationary phases vol.24, pp.5, 2012, https://doi.org/10.1002/chir.22041
  2. Enantiomeric Separation of 1-(Benzofuran-2-yl)alkylamines on Chiral Stationary Phases Based on Chiral Crown Ethers vol.33, pp.10, 2011, https://doi.org/10.5012/bkcs.2012.33.10.3497
  3. State-of-the-art enantioseparations of natural and unnatural amino acids by high-performance liquid chromatography vol.81, pp.None, 2016, https://doi.org/10.1016/j.trac.2016.01.016