DOI QR코드

DOI QR Code

Photodynamic and Antioxidant Activities of Divalent Transition Metal Complexes of Methyl Pheophorbide-a

  • Yoon, Il (PDT Research Institute, School of Nano System Engineering, Inje University) ;
  • Park, Ho-Sung (PDT Research Institute, School of Nano System Engineering, Inje University) ;
  • Cui, Bing Cun (PDT Research Institute, School of Nano System Engineering, Inje University) ;
  • Li, Jia Zhu (PDT Research Institute, School of Nano System Engineering, Inje University) ;
  • Kim, Jung-Hwa (PDT Research Institute, School of Nano System Engineering, Inje University) ;
  • Lkhagvadulam, Byambajav (PDT Research Institute, School of Nano System Engineering, Inje University) ;
  • Shim, Young-Key (PDT Research Institute, School of Nano System Engineering, Inje University)
  • Received : 2011.03.14
  • Accepted : 2011.04.08
  • Published : 2011.08.20

Abstract

A comparative study of the photodynamic and antioxidant activities of methyl pheophorbide-a (MPa, 1) and its transition metal(II) complexes (2-5) is described. Four transition metal complexes (palladium(II): 2, zinc(II): 3, cobalt(II): 4 and copper(II): 5) of MPa were prepared by reaction between the corresponding transition metal and 1, respectively, and were characterized by $^1H$-NMR and UV-vis spectroscopic and mass spectrometric analyses. In vitro results show a photodynamic therapy (PDT) efficacy with A549 cells might be attributed to a heavy atom effect of the transition metal complexes of MPa. Among them, 4 and 5 showed higher photodynamic activity than that of 1 at the concentration of 5 ${\mu}M$ at 24 h incubation after photoirradiation. The images of morphological change for 2-5 show evidence for the PDT effect with A549 cells. And the all transition metal complexes of MPa showed higher antioxidant activity than that of MPa, in which 4 showed the highest antioxidant activity.

Keywords

References

  1. Pandey, R. K. J. Porphyrins Phthalocyanines 2000, 4, 368- 373. https://doi.org/10.1002/(SICI)1099-1409(200006/07)4:4<368::AID-JPP244>3.0.CO;2-6
  2. Bonnet, R. In Chemical Aspects of Photodynamic Therapy; Gordon and Breach Science Publishers: Netherlands, 2000.
  3. MacDonald, I. J.; Dougherty, T. J. Porphyrins Phthalocyanines 2001, 5, 105-129. https://doi.org/10.1002/jpp.328
  4. Detty, M. R.; Gibson, S. L.; Wagner, S. J. J. Med. Chem. 2004, 47, 3897-3915. https://doi.org/10.1021/jm040074b
  5. Pandey, R. K.; Zheng, G. In Porphyrins as Photosensitizers in Photodynamic Therapy, In The Porphyrin Handbook; Kadish, Smith, Guilard, Eds.; Academic Press: New York, 2000; Vol. 6, pp 157-230.
  6. Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Nat. Rev. Cancer 2003, 3, 380-387. https://doi.org/10.1038/nrc1071
  7. Luguya, R.; Jensen, T. J.; Smith, K. M.; Vicente, M. G. H. Bioorg. Med. Chem. 2006, 14, 5890-5897. https://doi.org/10.1016/j.bmc.2006.05.026
  8. Derycke, A. S. L.; de Witte, P. A. M. Adv. Drug Delivery Rev. 2004, 56, 17-30 https://doi.org/10.1016/j.addr.2003.07.014
  9. Ikeda, A.; Nagano, M.; Akiyama, M.; Matsumoto, M.; Ito, S.; Mukai, M.; Hashizume, M.; Kikuchi, J.-I.; Katagiri, K.; Ogawa, T.; Takeya, T. Chem. Asian J. 2009, 4, 199-205. https://doi.org/10.1002/asia.200800271
  10. Smith, K. M.; Goff, D. A.; Simpson, D. J. J. Am. Chem. Soc. 1985, 107, 4946-4954. https://doi.org/10.1021/ja00303a021
  11. Bayarmaa, B.; Bayarmaa, B.; Lee, W.- K.; Shim, Y. K. Bull. Korean Chem. Soc. 2008, 29, 237-240. https://doi.org/10.5012/bkcs.2008.29.1.237
  12. Sengee, G.-I.; Badraa, N.; Shim, Y. K. Int. J. Mol. Sci. 2008, 286, 131-145.
  13. Sengee, G.-I.; Badraa, N.; Lee, W.-K.; Shim, Y. K. Bull. Korean Chem. Soc. 2008, 29, 2505-2508. https://doi.org/10.5012/bkcs.2008.29.12.2505
  14. Galindev, O.; Badraa, N.; Dalantai, M.; Sengee, G.-I.; Dorjnamjin, D.; Shim, Y. K. Photochem. Photobiol. Sci. 2008, 7, 1273-1281. https://doi.org/10.1039/b802433m
  15. Sengee, G.- I.; Badraa, N.; Shim, Y. K. J. Porphyrins Phthalocyanines 2009, 13, 819-822.
  16. Galindev, O.; Dalantai, M.; Ahn, W. S.; Shim, Y. K. J. Porphyrins Phthalocyanines 2009, 13, 823-831. https://doi.org/10.1142/S1088424609001029
  17. Bayarmaa, B.; Bayarmaa, B.; Shim, Y. K. J. Porphyrins Phthalocyanines 2009, 13, 832-841. https://doi.org/10.1142/S1088424609001078
  18. Cui, B. C.; Cha, M. U.; Li, J. Z.; Park, H. S.; Yoon, I.; Shim, Y. K. Bull. Korean Chem. Soc. 2010, 31, 3313-3317. https://doi.org/10.5012/bkcs.2010.31.11.3313
  19. Yoon, I.; Park, H. S.; Cui, B. C.; Kim, J. H.; Shim, Y. K. Bull. Korean Chem. Soc. 2011, 32, 169- 174. https://doi.org/10.5012/bkcs.2011.32.1.169
  20. Farrer, N. J.; Sadler, P. J. Aust. J. Chem. 2008, 61, 669-674. https://doi.org/10.1071/CH08088
  21. Schatzschneider, U. Eur. J. Inorg. Chem. 2010, 1451-1467.
  22. Strauss, S. H.; Silver, M. E.; Long, K. M.; Thompson, R. G.; Hudgens, R. A.; Spartalian, K.; Ibers, J. A. J. Am. Chem. Soc. 1985, 107, 4207-4215. https://doi.org/10.1021/ja00300a021
  23. Harvey, J. D.; Ziegler, C. J. Coord. Chem. Rev. 2003, 247, 1-19 https://doi.org/10.1016/j.cct.2003.07.001
  24. Huang, Q.; Pan, Z.; Wang, P.; Chen, Z.; Zhang, X.; Xu, H. Bioorg. Med. Chem. Lett. 2006, 16, 3030-3033. https://doi.org/10.1016/j.bmcl.2005.02.094
  25. ingh, A.; Huang, W.-Y.; Wgbujor, R.; Johnson, L. W. J. Phys. Chem. A 2001, 105, 5778-5784. https://doi.org/10.1021/jp002687f
  26. Obata, M.; Hirohara, S.; Tanaka, R.; Kinoshita, I.; Ohkubo, K.; Fukuzumi, S.; Tanihara, M.; Yano, S. J. Med. Chem. 2009, 52, 2747-2753. https://doi.org/10.1021/jm8015427
  27. Petit, L.; Adamo, C.; Russo, N. J. Phys. Chem. B 2005, 109, 12214-12221. https://doi.org/10.1021/jp050667d
  28. Chen, Y.; Potter, W. R.; Missert, J. R.; Morgan, J.; Pandey, R. K. Bioconjugate Chem. 2007, 18, 1460-1473. https://doi.org/10.1021/bc070092i
  29. Fukuzumi, S.; Ohkubo, K.; Zheng, X.; Chen, Y.; Pandey, R. K.; Zhan, R.; Kadish, K. M. J. Phys. Chem. B 2008, 112, 2738-2746. https://doi.org/10.1021/jp0766757
  30. Dreshsler, U.; Pfaff, M.; Hanack, M. Eur. J. Org. Chem. 1999, 3441-3453.
  31. Das, B.; Tokunaga, E.; Tanaka, M.; Sasaki, T.; Shibata, N. Eur. J. Org. Chem. 2010, 2878-2884.
  32. Lanzo, I.; Russo, N.; Sicilia, E. J. Phys. Chem. B 2008, 112, 4123- 4130. https://doi.org/10.1021/jp710880x
  33. Azenha, E. G.; Serra, A. C.; Pineiro, M.; Pereira, M. M.; de Melo, J. S.; Arnaut, L. G.; Formosinho, S. J.; Rocha Gonsalves, A. M. d. Chem. Phys. 2002, 280, 177-190. https://doi.org/10.1016/S0301-0104(02)00485-8
  34. Scalise, I.; Durantini, E. N. J. Photochem. Photobiol. A 2004, 162, 105-113. https://doi.org/10.1016/S1010-6030(03)00317-4
  35. Ji, H.-F.; Zhang, H.-Y. Chem. Res. Toxicol. 2004, 17, 471-475. https://doi.org/10.1021/tx034232y
  36. Asayama, S.; Kawamura, E.; Nagaoka, S.; Kawakami, H. Mol. Pharm. 2006, 3, 468-470. https://doi.org/10.1021/mp0500667
  37. Liu, J.; Lagger, G.; Tacchini, P.; Girault, H. H. J. Electroanal. Chem. 2008, 619-620, 131-136. https://doi.org/10.1016/j.jelechem.2008.03.017
  38. Alagona, G.; Ghio, C. J. Phys. Chem. A 2009, 113, 15206-15216. https://doi.org/10.1021/jp905521u
  39. Petrovic , Z. D.; Hadjipavlou-Litina, D.; Pontiki, E.; Simijonovi , D. Bioorg. Chem. 2009, 37, 162-166. https://doi.org/10.1016/j.bioorg.2009.07.003
  40. Bhuyan, B. J.; Mugesh, G. Org. Biomol. Chem. 2011, 9, 1356-1365. https://doi.org/10.1039/c0ob00823k
  41. Milne, L.; Nicotera, P.; Orrenius, S.; Burkitt, M. J. Arch. Biochem. Biophys. 1991, 304, 102-109.
  42. Hermes-Lima, M.; Goncalves, M. S.; Andrade, R. G., Jr. Mol. Cell. Biochem. 2001, 228, 73-82. https://doi.org/10.1023/A:1013348005312
  43. Warner, D. S.; Sheng, H.; Batinic-Haberle, I. J. Exp. Biol. 2004, 207, 3221-3231. https://doi.org/10.1242/jeb.01022
  44. Battin, E. E.; Perron, N. R.; Brumaghim, J. L. Inorg. Chem. 2006, 45, 499-501. https://doi.org/10.1021/ic051594f
  45. Singal, P. K.; Khaper, N.; Palace, V.; Kumar, D. Cardiovasc. Res. 1998, 40, 426-432. https://doi.org/10.1016/S0008-6363(98)00244-2
  46. Halliwell, B. Drugs Aging 2001, 18, 685-716. https://doi.org/10.2165/00002512-200118090-00004
  47. Valko, M.; Izakovic, M.; Mazur, M.; Rhodes, C. J.; Telser, J. Mol. Cell. Biochem. 2004, 266, 37-56. https://doi.org/10.1023/B:MCBI.0000049134.69131.89
  48. Karanjawala, Z. E.; Lieber, M. R. Mech. Aging Dev. 2004, 125, 405-415. https://doi.org/10.1016/j.mad.2004.04.003
  49. Malvy, D. J. M.; Favier, A.; Faure, H.; Preziosi, P.; Galan, P.; Arnaud, J.; Roussel, A.-M.; Briancon, S.; Hercberg, S. Cancer Detect. Prev. 2001, 25, 479-485.
  50. El-Bayoumy, K. Mutat. Res. 2001, 475, 123-139. https://doi.org/10.1016/S0027-5107(01)00075-6
  51. Clarke, R.; Armitage, J. Cardiovasc. Drugs Ther. 2003, 16, 411-415.
  52. Soriano-Garcia, M. Curr. Med. Chem. 2004, 11, 1657-1659. https://doi.org/10.2174/0929867043365053
  53. Ol'shevskaya, V. A.; Nikitina, R. G.; Savchenko, A. N.; Malshakova, M. V.; Vinogradov, A. M.; Golovina, G. V.; Belykh, D. V.; Kutchin, A. V.; Kaplan, M. A.; Kalinin, V. N.; Kuzmin, V. A.; Shtil, A. A.; Bioor. Med. Chem. 2009, 17, 1297-1306. https://doi.org/10.1016/j.bmc.2008.12.016
  54. Ol'shevskaya, V. A.; Savchenko, A. N.; Zaitsev, A. V.; Kononova, E. G.; Petrovskii, P. V.; Ramonova, A. A.; Tatarskiy, V. V., Jr.; Uvarov, O. V.; Moisenovich, M. M.; Kalinin, V. N.; Shtil, A. A. J. Organometal. Chem. 2009, 694, 1632-1637. https://doi.org/10.1016/j.jorganchem.2008.11.013
  55. Boucher, L. J.; Katz, J. J. J. Am. Chem. Soc. 1967, 89, 4703- 4708. https://doi.org/10.1021/ja00994a024
  56. Pandey, R. K.; Shiau, F. Y.; Smith, N. W.; Dougherty, T. J.; Smith, K. M. Tetrahedron 1992, 48, 7591-7600. https://doi.org/10.1016/S0040-4020(01)90371-0
  57. Helfrich, M.; Rüdiger, W. Z. Naturforsch. C 1992, 47, 231-238.
  58. Pesch, R.; Budzikiewicz, H. Heterocycles 1976, 5, 749-770. https://doi.org/10.3987/S-1976-01-0749
  59. Nonomura, Y.; Yoshioka, N.; Inoue, H. Inorg. Chim. Acta 1994, 224, 181-184. https://doi.org/10.1016/0020-1693(94)04116-4
  60. Berezin, M. B. Russ. J. Coord. Chem. 1998, 24, 40-42.
  61. Belykh, D. V.; Tarabukina, I. S.; Matveev, Y. S.; Kuchin, A. V. Russ. J. Gen. Chem. 2007, 77, 1300-1307. https://doi.org/10.1134/S1070363207070249
  62. Strell, M.; Zuther, F. Liebigs Ann. Chem. 1958, 612, 264-271. https://doi.org/10.1002/jlac.19586120126
  63. Loach, P. A.; Calvin, M. Nature 1964, 202, 343-345. https://doi.org/10.1038/202343a0
  64. Boucher, L. J.; Garber, H. K. Inorg. Chem. 1970, 9, 2644-2649. https://doi.org/10.1021/ic50094a004
  65. Nishizaki, M.; Meyn, R. E.; Levy, L. B.; Atkinson, E. N.; White, R. A.; Roth, J. A.; Ji, L. Clinical Cancer Research 2001, 7, 2887- 2897.
  66. Ruiz-Roca, B.; Navarro, M. P.; Seiquer, I. J. Agric. Food Chem. 2008, 56, 9056-9063. https://doi.org/10.1021/jf801718h
  67. Kwon, Y.; Kim, H.; Park, S.; Jung, S. Bull. Korean Chem. Soc. 2010, 31, 3035-3037. https://doi.org/10.5012/bkcs.2010.31.10.3035
  68. Kim, H. J.; Noh, J. S.; Kwon, M. J.; Song, S.; Suh, H.; Kim, M. J.; Song, Y. O. Bull. Korean Chem. Soc. 2010, 31, 3327-3332. https://doi.org/10.5012/bkcs.2010.31.11.3327
  69. Hartwich, G.; Fiedor, L.; Simonin, I.; Cmiel, E.; Schafer, W.; Noy, D.; Scherz, A.; Scheer, H. J. Am. Chem. Soc. 1998, 120, 3675-3683. https://doi.org/10.1021/ja970874u
  70. Kozyrev, A. N.; Chen, Y.; Goswami, L. N.; Tabaczynski, W. A.; Pandey, R. K. J. Org. Chem. 2006, 71, 1949- 1960. https://doi.org/10.1021/jo052334i
  71. Kau, J. H.; Lin, C. G.; Huang, H. H.; Hsu, H. L.; Chen, K. C.; Wu, Y. P.; Lin, H. C. Curr. Microbiol. 2002, 44, 106-111. https://doi.org/10.1007/s00284-001-0059-8
  72. Moravek, M.; Dietrich, R.; Buerk, C.; Broussolle, V.; Guinebretiere, M.-H.; Granum, P. E.; Nguyen-the, C.; Martlbauer, E. FEMS Microbiol. Lett. 2006, 257, 293-298. https://doi.org/10.1111/j.1574-6968.2006.00185.x
  73. Ngamwongsatit, P.; Banada, P. P.; Panbangred, W.; Bhunia, A. K. J. Microbiol. Methods 2008, 73, 211-215. https://doi.org/10.1016/j.mimet.2008.03.002
  74. Engeland, M. V.; Nieland, L. J.; Ramaekers, F. C.; Schutte, B.; Reutelingsperger, C. P. Cytometry 1998, 31, 1-9. https://doi.org/10.1002/(SICI)1097-0320(19980101)31:1<1::AID-CYTO1>3.0.CO;2-R
  75. Wan, Q.; Liu, L.; Xing, D.; Chen, Q. Photochem. Photobiol. 2008, 84, 250-257.
  76. Lu, X.; Nan, M.; Zhang, H.; Liu, X.; Yuan, H.; Yang, J. J. Phys. Chem. C 2007, 111, 14998-15002. https://doi.org/10.1021/jp072551i
  77. Oh, C.; Li, M.; Kim, E.-H.; Park, J. S.; Lee, J.-C.; Ham, S. W. Bull. Korean Chem. Soc. 2010, 31, 3513-3514. https://doi.org/10.5012/bkcs.2010.31.12.3513
  78. Bors, W.; Heller, W.; Michel, C.; Saran, M. Methods Enzymol. 1990, 186, 343-355. https://doi.org/10.1016/0076-6879(90)86128-I
  79. Afanas'ev, I. B.; Ostrakhovitch, E. A.; Mikhal'chik, E. V.; Ibragimova, G. A.; Korkina, L. G. Biochem. Pharmacol. 2001, 61, 677-684. https://doi.org/10.1016/S0006-2952(01)00526-3
  80. Moridani, M. Y.; Pourahmad, J.; Bui, H.; Siraki, A.; O'Brien, P. J. Free Radic. Biol. Med. 2003, 34, 243-253. https://doi.org/10.1016/S0891-5849(02)01241-8
  81. Bukhari, S. B.; Memon, S.; Tahir, M. M.; Bhanger, M. I. J. Mol. Structure 2008, 892, 39-46. https://doi.org/10.1016/j.molstruc.2008.04.050
  82. Inan, C.; Kilinc, K.; Kotilo lu, E.; Akman, H. O.; Kilic, I.; Michl, J. J. Lab. Clin. Med. 1998, 132, 157-165. https://doi.org/10.1016/S0022-2143(98)90011-7
  83. Gal, D. Biochem. Biophys. Res. Commun. 1992, 186, 1032- 1036. https://doi.org/10.1016/0006-291X(92)90850-K
  84. Gal, D. Biochem. Biophys. Res. Commun. 1994, 202, 10-16. https://doi.org/10.1006/bbrc.1994.1886
  85. Kriska, T.; Maltseva, E.; G, D. Biochem. Biophys. Res. Commun. 1996, 223, 136-140. https://doi.org/10.1006/bbrc.1996.0858
  86. Gal, D.; Kriska, T.; Maltseva, E. Biochem. Biophys. Res. Commun. 1997, 233, 173-176. https://doi.org/10.1006/bbrc.1997.6416
  87. Nemeth, A.; Jakus, J.; Kriska, T.; Keszler, A.; Vanyur, R.; Gal, D. Biochem. Biophys. Res. Commun. 1999, 255, 360-366. https://doi.org/10.1006/bbrc.1999.0193
  88. Shutova, T.; Kriska, T.; Nemeth, A.; Agabekov, V.; Gal, D. Biochem. Biophys. Res. Commun. 2000, 270, 125-130. https://doi.org/10.1006/bbrc.2000.2385
  89. Gal, D.; Shutova, T.; Kriska, T.; Nemeth, A. J. Biochem. Biophys. Methods 2003, 55, 11-21. https://doi.org/10.1016/S0165-022X(02)00172-0

Cited by

  1. Efficient Photosensitization by a Chlorin–Polyoxometalate Supramolecular Complex vol.53, pp.1, 2014, https://doi.org/10.1021/ic401729k
  2. Influence of Amino Acid-Nucleobase Hybrid Ligand in Binding and Biological Activity of Co(II) and Zn(II) Complexes vol.26, pp.5, 2016, https://doi.org/10.1007/s10895-016-1874-4
  3. Biotinylated Chlorin and Its Zinc and Indium Complexes: Synthesis and In Vitro Biological Evaluation for Photodynamic Therapy vol.10, pp.2, 2017, https://doi.org/10.3390/ph10020041
  4. donor Schiff base ligand vol.32, pp.7, 2017, https://doi.org/10.1002/bio.3330
  5. improves postprandial hyperglycemia in diabetic mice through α-glucosidase inhibition pp.0951418X, 2019, https://doi.org/10.1002/ptr.6260
  6. Template engineered biopotent macrocyclic complexes involving furan moiety: Molecular modeling and molecular docking vol.1093, pp.None, 2015, https://doi.org/10.1016/j.molstruc.2015.03.045
  7. Synthesis, antimicrobial, antioxidant and molecular docking studies of thiophene based macrocyclic Schiff base complexes vol.1100, pp.None, 2011, https://doi.org/10.1016/j.molstruc.2015.07.025
  8. Photodynamic Activity of Vitamin-Chlorin Conjugates at Nanomolar Concentrations against Triple-Negative Breast Cancer Cells vol.4, pp.2, 2019, https://doi.org/10.1021/acsomega.8b02323
  9. COVID-19 Therapy: Could a Chlorophyll Derivative Promote Cellular Accumulation of Zn 2+ Ions to Inhibit SARS-CoV-2 RNA Synthesis? vol.11, pp.None, 2011, https://doi.org/10.3389/fpls.2020.01270
  10. Cadmium ion-chlorophyll interaction – Examination of spectral properties and structure of the cadmium-chlorophyll complex and their relevance to photosynthesis inhibition vol.261, pp.None, 2011, https://doi.org/10.1016/j.chemosphere.2020.127434
  11. Mitochondrial Targeting Cationic Purpurinimide–Polyoxometalate Supramolecular Complexes for Enhanced Photodynamic Therapy with Reduced Dark Toxicity vol.2021, pp.31, 2011, https://doi.org/10.1002/ejic.202100485