DOI QR코드

DOI QR Code

Inertial Dynamic Effect on the Rates of Diffusion-Controlled Ligand-Receptor Reactions

  • Lee, Woo-Jin (Corporate R&D Institute, Samsung Electro-Mechanics Co. Ltd.) ;
  • Kim, Ji-Hyun (Department of Chemistry, Seoul National University) ;
  • Lee, Sang-Youb (Department of Chemistry, Seoul National University)
  • Received : 2011.03.14
  • Accepted : 2011.04.01
  • Published : 2011.08.20

Abstract

It has been known that the inertial dynamics has a little effect on the reaction rate in solutions. In this work, however, we find that for diffusion-controlled reactions between a ligand and a receptor on the cell surface there is a noticeable inertial dynamic effect on the reaction rate. We estimate the magnitude of the inertial dynamic effect by comparing the approximate analytic results obtained with and without the inertial dynamic effect included. The magnitude of the inertial dynamic effect depends on the friction coefficient of the ligand as well as on the relative scale of the receptor size to the distance traveled by the ligand during its velocity relaxation time.

Keywords

References

  1. DeLisi, C. Q. Rev. Biophys. 1980, 13, 201. https://doi.org/10.1017/S0033583500001657
  2. Berg, O. G.; von Hippel, P. H. Ann. Rev. Biophys. Biophys. Chem. 1985, 14, 131. https://doi.org/10.1146/annurev.bb.14.060185.001023
  3. Wiegel, F. W. Phys. Rep. 1983, 95, 283. https://doi.org/10.1016/0370-1573(83)90078-9
  4. Hill, T. L. Proc. Nat. Acad. Sci. U.S.A. 1975, 72, 4918. https://doi.org/10.1073/pnas.72.12.4918
  5. Shoup, D.; Lipari, G.; Szabo, A. Biophys. J. 1981, 36, 697. https://doi.org/10.1016/S0006-3495(81)84759-5
  6. Keizer, J.; Ramirez, J.; Peacock-Lopez, E. Biophys. J. 1985, 47, 79. https://doi.org/10.1016/S0006-3495(85)83879-0
  7. Baldo, M.; Grassi, A.; Raudino, A. Phys. Rev. A 1989, 40, 1017. https://doi.org/10.1103/PhysRevA.40.1017
  8. Barzykin, A. V.; Shushin, A. I. Biophys. J. 2001, 80, 2062. https://doi.org/10.1016/S0006-3495(01)76180-2
  9. Batsilas, L.; Berezhkovskii, A. M.; Shvartsman, S. Y. Biophys. J. 2003, 85, 1.
  10. Moreira, A. G.; Marques, C. M. J. Chem. Phys. 2004, 120, 6229. https://doi.org/10.1063/1.1651088
  11. Harris, S. J. Chem. Phys. 1981, 75, 3103.
  12. Harris, S. J. Chem. Phys. 1982, 77, 934
  13. Harris, S. J. Chem. Phys. 1983, 78, 4698. https://doi.org/10.1063/1.445315
  14. Naqvi, K. R.; Mork, K. J.; Waldenstrøm, S. Phys. Rev. Lett. 1982, 49, 304. https://doi.org/10.1103/PhysRevLett.49.304
  15. Naqvi, K. R.; Waldenstrøm, S.; Mork, K. J. J. Chem. Phys. 1983, 78, 2710. https://doi.org/10.1063/1.445031
  16. Ibuki, K.; Ueno, M. J. Chem. Phys. 1997, 106, 10113. https://doi.org/10.1063/1.474045
  17. Ibuki, K.; Ueno, M. Bull. Chem. Soc. Jpn. 1997, 70, 543. https://doi.org/10.1246/bcsj.70.543
  18. Lee, J.; Yang, S.; Kim, J.; Lee, S. J. Chem. Phys. 2004, 120, 7564. https://doi.org/10.1063/1.1687680
  19. Lee, S.; Karplus, M. J. Chem. Phys. 1987, 86, 1883. https://doi.org/10.1063/1.452140
  20. Wilemski, G.; Fixman, M. J. Chem. Phys. 1973, 58, 4009. https://doi.org/10.1063/1.1679757
  21. Carslaw, H. S.; Jaeger, J. C. Conduction of Heat in Solids, 2nd ed.; Clarendon Press: Oxford, 1959.
  22. Wang, Z. X.; Guo, D. R. Special Functions; World Scientific: Singapore, 1989.
  23. Risken, H. The Fokker-Planck Equation, 2nd ed.; Springer: Berlin, 1989.
  24. Lee, S.; Karplus, M. J. Chem. Phys. 1987, 86, 1904. https://doi.org/10.1063/1.452757
  25. Yang, S.; Kim, J.; Lee, S. J. Chem. Phys. 1999, 111, 10119. https://doi.org/10.1063/1.480363
  26. Yang, S.; Han, H.; Lee, S. J. Phys. Chem. B 2001, 105, 6017 https://doi.org/10.1021/jp0102419
  27. Ermak, D. L.; McCammon, J. A. J. Chem. Phys. 1978, 69, 1352. https://doi.org/10.1063/1.436761
  28. Ermak, D. L.; Buckholz, H. J. Comput. Phys. 1980, 35, 169. https://doi.org/10.1016/0021-9991(80)90084-4

Cited by

  1. Irreversible bimolecular reactions with inertia: from the trapping to the target setting at finite densities vol.25, pp.24, 2011, https://doi.org/10.1088/0953-8984/25/24/245101