DOI QR코드

DOI QR Code

Enantioselective Hydrosilylation of Imines Catalyzed by Diamine-Zinc Complexes

  • Park, Bu-Mahn (Department of Chemistry and Institute of Basic Science, Sungkyunkwan University) ;
  • Feng, Xinhui (Department of Chemistry and Institute of Basic Science, Sungkyunkwan University) ;
  • Yun, Jae-Sook (Department of Chemistry and Institute of Basic Science, Sungkyunkwan University)
  • Received : 2011.03.09
  • Accepted : 2011.03.24
  • Published : 2011.08.20

Abstract

The efficient asymmetric hydrosilylation of imines in the presence of polymethylhydrosiloxane has been investigated by screening chiral diamine-zinc complexes. A series of chiral diamine ligands were prepared from optically pure 1,2-diphenyl-1,2-ethanediamine and screened for effectiveness. N-Benzylic substituents were required for high enantioselectivity; ligands with bulky groups or extra coordinating groups such as OH and S lowered the catalytic activity. The level of asymmetric induction was usually in >90% ee range for aromatic imine substrates. A linear correlation between the ee of the ligand and that of the product was observed, indicating the presence of a 1:1 ratio of ligand to metal coordination in the active catalytic complex.

Keywords

References

  1. Nishiyama, H.; Itoh, K. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York, 2000; Chapter 2.
  2. Nishiyama, H. In Comprehensive Asymmetric Catalysis; Jacobson, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Chapter 6.3.
  3. Yamamoto, K.; Uramoto, Y.; Kumada, M. J. Organomet. Chem. 1971, 31, C9. https://doi.org/10.1016/S0022-328X(00)87455-0
  4. Ojima, I.; Nihonyanagi, M.; Nagai, Y. J. Chem. Soc. Chem. Commun. 1972, 938.
  5. Dumont, W.; Poulin, J.-C.; Dang, T.-P.; Kagan, H. B. J. Am. Chem. Soc. 1973, 95, 8295. https://doi.org/10.1021/ja00806a015
  6. Brunner, H.; Riepl, G. Angew. Chem. Int. Ed. Engl. 1982, 21, 377. https://doi.org/10.1002/anie.198203771
  7. Arena, C. G. Mini-Rev. Org. Chem. 2009, 6, 159. https://doi.org/10.2174/157019309788922766
  8. Verdaguer, X.; Lange, U. E. W.; Reding, M. T.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 6784. https://doi.org/10.1021/ja960808c
  9. Gruber-Woelfler, H.; Khinast, J. G. Organometallics 2009, 28, 2546. https://doi.org/10.1021/om800643q
  10. Becker, R.; Brunner, H.; Mahboobi, S.; Wiegrebe, W. Angew. Chem. Int. Ed. Engl. 1985, 24, 995. https://doi.org/10.1002/anie.198509951
  11. Nishibayashi, Y.; Takei, I.; Uemura, S.; Hidai, M. Organometallics 1998, 17, 3420. https://doi.org/10.1021/om980399o
  12. Lipshutz, B. H.; Shimizu, H. Angew. Chem. Int. Ed. 2004, 43, 2228. https://doi.org/10.1002/anie.200353294
  13. Nolin, K. A.; Ahn, R. W.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 12462. https://doi.org/10.1021/ja050831a
  14. Nolin, K. A.; Ahn, R. W.; Kobayashi, Y.; Kennedy- Smith, J. J.; Toste, F. D. Chem. Eur. J. 2010, 16, 9555. https://doi.org/10.1002/chem.201001164
  15. Park, B.-M.; Mun, S.; Yun, J. Adv. Synth. Catal. 2006, 348, 1029. https://doi.org/10.1002/adsc.200606149
  16. Mimoun, H. J. Org. Chem. 1999, 64, 2582. https://doi.org/10.1021/jo982314z
  17. Mimoun, H.; Laumer, J. Y.; Giannini, L.; Scopelliti, R.; Floriani, C. J. Am. Chem. Soc. 1999, 121, 6158. https://doi.org/10.1021/ja990522i
  18. Bette, V.; Mortreux, A.; Lehmann, C. W.; Carpentier, J.-F. Chem. Commun. 2003, 332.
  19. Bandini, M.; Melucci, M.; Piccinelli, F.; Sinisi, R.; Tommasi, S.; Umani-Ronchi, A. Chem. Commun. 2007, 4519.
  20. Inagaki, T.; Yamada, Y.; Phong, L. T.; Furuta, A.; Ito, J.-i.; Nishiyama, H. Synlett 2009, 253.
  21. Santacruz, E.; Huelgas, G.; Angulo, S. K.; Mastranzo, V. M.; Hernandez-Ortega, S.; Avina, J. A.; Juaristi, E.; de Parrodi, C. A.; Walsh, P. J. Tetrahedron: Asymmetry 2009, 20, 2788. https://doi.org/10.1016/j.tetasy.2009.11.027
  22. Gajewy, J.; Kwit, M.; Gawro ski, J. Adv. Synth. Catal. 2009, 351, 1055. https://doi.org/10.1002/adsc.200800801
  23. Bette, V.; Mortreux, A.; Savoia, D.; Carpentier, J.-F. Adv. Synth. Catal. 2005, 347, 289. https://doi.org/10.1002/adsc.200404283
  24. Yun, J.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 5640. https://doi.org/10.1021/ja990450v
  25. Hughes, G.; Kimura, M.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11253. https://doi.org/10.1021/ja0351692
  26. Mun, S.; Lee, J.-E.; Yun, J. Org. Lett. 2006, 8, 4887. https://doi.org/10.1021/ol061955a
  27. Girard, C.; Kagan, H. B. Angew. Chem. Int. Ed. 1998, 37, 2922. https://doi.org/10.1002/(SICI)1521-3773(19981116)37:21<2922::AID-ANIE2922>3.0.CO;2-1
  28. Guillaneux, D.; Zhao, S.-H.; Samuel, O.; Rainford, D.; Kagan, H. B. J. Am. Chem. Soc. 1994, 116, 9430. https://doi.org/10.1021/ja00100a004
  29. Gümrukcuoglu, I. E.; Jeffery, J.; Lappert, M. F.; Pedley, J. B.; Rai, A. K. J. Organomet. Chem. 1988, 341, 53. https://doi.org/10.1016/0022-328X(88)89062-4
  30. Yang, Q.; Shang, G.; Gao, W.; Deng, J.; Zhang, X. Angew. Chem. Int. Ed. 2006, 45, 3832. https://doi.org/10.1002/anie.200600263

Cited by

  1. Asymmetric Transfer Hydrogenation of Ketimines Using Well-Defined Iron(II)-Based Precatalysts Containing a PNNP Ligand vol.14, pp.17, 2012, https://doi.org/10.1021/ol302079q
  2. Non-Redox-Metal-Catalyzed Redox Reactions: Zinc Catalysts vol.7, pp.11, 2012, https://doi.org/10.1002/asia.201200596
  3. Rise of the Zinc Age in Homogeneous Catalysis? vol.3, pp.2, 2013, https://doi.org/10.1021/cs300685q
  4. SiH Promoted by an Iron Complex vol.25, pp.6, 2014, https://doi.org/10.1002/hc.21175
  5. New Insights into Hydrosilylation of Unsaturated Carbon–Heteroatom (C═O, C═N) Bonds by Rhenium(V)–Dioxo Complexes vol.119, pp.16, 2015, https://doi.org/10.1021/acs.jpca.5b00567
  6. Immobilization of Heteroleptic Bis(oxazoline) Zinc Catalysts on SBA-15 for Asymmetric Hydrosilylation vol.34, pp.20, 2015, https://doi.org/10.1021/acs.organomet.5b00714
  7. -Butylsulfinyl)imines Catalyzed by Zinc Acetate vol.2016, pp.5, 2016, https://doi.org/10.1002/ejoc.201501318
  8. ) vol.45, pp.5, 2016, https://doi.org/10.1039/C5DT02860D
  9. Zinc-Catalyzed Enantioselective Hydrosilylation of Ketones and Imines under Solvent-Free Conditions vol.8, pp.23, 2016, https://doi.org/10.1002/cctc.201601140
  10. Enantioselective Hydrosilylation of Imines Catalyzed by Chiral Zinc Acetate Complexes vol.81, pp.1, 2016, https://doi.org/10.1021/acs.joc.5b02613
  11. Implication of a Silyl Cobalt Dihydride Complex as a Useful Catalyst for the Hydrosilylation of Imines vol.11, pp.None, 2011, https://doi.org/10.1021/acscatal.1c03886