DOI QR코드

DOI QR Code

Comparative Characteristics of Gold-Gold and Gold-Silver Nanogaps Probed by Raman Scattering Spectroscopy of 1,4-Phenylenediisocyanide

  • Kim, Kwan (Department of Chemistry, Seoul National University) ;
  • Choi, Jeong-Yong (Department of Chemistry, Seoul National University) ;
  • Shin, Dong-Ha (Department of Chemistry, Seoul National University) ;
  • Lee, Hyang-Bong (Department of Chemistry, Seoul National University) ;
  • Shin, Kuan-Soo (Department of Chemistry, Soongsil University)
  • Received : 2011.03.05
  • Accepted : 2011.03.14
  • Published : 2011.08.20

Abstract

A nanogap formed by a metal nanoparticle and a flat metal substrate is one kind of "hot site" for surface-enhanced Raman scattering (SERS). The characteristics of a typical nanogap formed by a planar Au and either an Au and Ag nanoparticle have been well studied using 4-aminobenzenethiol (4-ABT) as a probe. 4-ABT is, however, an unusual molecule in the sense that its SERS spectral feature is dependent not only on the kinds of SERS substrates but also on the measurement conditions; thus further characterization is required using other adsorbate molecules such as 1,4-phenylenediisocyanide (1,4-PDI). In fact, no Raman signal was observable when 1,4-PDI was selfassembled on a flat Au substrate, but a distinct spectrum was obtained when 60 nm-sized Au or Ag nanoparticles were adsorbed on the pendent -NC groups of 1,4-PDI. This is definitely due to the electromagnetic coupling between the localized surface plasmon of Au or Ag nanoparticle with the surface plasmon polariton of the planar Au substrate, allowing an intense electric field to be induced in the gap between them. A higher Raman signal was observed when Ag nanoparticles were attached to 1,4-PDI, irrespective of the excitation wavelength, and especially the highest Raman signal was measured at the 632.8 nm excitation (with the enhancement factor on the order of ${\sim}10^3$), followed by the excitation at 568 and 514.5 nm, in agreement with the finite-difference timedomain calculation. From a separate potential-dependent SERS study, the voltage applied to the planar Au appeared to be transmitted without loss to the Au or Ag nanoparticles, and from the study of the effect of volatile organics, the voltage transmission from Au or Ag nanoparticles to the planar Au also appeared as equally probable to that from the planar Au to the Au or Ag nanoparticles in a nanogap electrode. The response of the Au-Ag nanogap to the external stimuli was, however, not the same as that of the Au-Au nanogap.

Keywords

References

  1. Chang, R. K.; Furtak, T. E. Surface Enhanced Raman Scattering; Plenum Press: New York, 1982.
  2. Moskovits, M. Rev. Mod. Phys. 1985, 57, 783. https://doi.org/10.1103/RevModPhys.57.783
  3. Nie, S.; Emory, S. R. Science 1997, 275, 1102. https://doi.org/10.1126/science.275.5303.1102
  4. Xu, H.; Bjerneld, E. J.; Kall, M.; Börjesson, L. Phys. Rev. Lett. 1999, 83, 4357. https://doi.org/10.1103/PhysRevLett.83.4357
  5. Futamata, M.; Maruyama, Y.; Ishikawa, M. Vib. Spectrosc. 2002, 30, 17. https://doi.org/10.1016/S0924-2031(02)00034-6
  6. Ni, J.; Lipert, R. J.; Dawson, G. B.; Porter, M. D. Anal. Chem. 1999, 71, 4903. https://doi.org/10.1021/ac990616a
  7. Kim, N. H.; Lee, S. J.; Kim, K. Chem. Commun. 2003, 9, 724.
  8. Cao, P.; Gu, R.; Tian, Z. Q. Langmuir 2002, 18, 7609. https://doi.org/10.1021/la025570m
  9. Chu, W.; LeBlanc, R. J.; Williams, C. T.; Kubota, J.; Zaera, F. J. Phys. Chem. B 2003, 107, 14365. https://doi.org/10.1021/jp0359586
  10. Tian, Z. Q.; Ren, B.; Wu, D. Y. J. Phys. Chem. B 2002, 106, 9463. https://doi.org/10.1021/jp0257449
  11. Markel, V. A.; Shalaev, V. M.; Zhang, P.; Huynh W.; Tay L.; Haslett, T. L.; Moskovits, M. Phys. Rev. B 1999, 59, 10903. https://doi.org/10.1103/PhysRevB.59.10903
  12. Bozhelvolnyi, S. I.; Markel, V. A.; Coello, V.; Kim, W.; Shalaev, V. M. Phys. Rev. B 1998, 58, 11441. https://doi.org/10.1103/PhysRevB.58.11441
  13. Michaels, A. M.; Jiang, J.; Brus, L. J. Phys. Chem. B 2000, 104, 11965. https://doi.org/10.1021/jp0025476
  14. Kim, K.; Yoon, J. K. J. Phys. Chem. B 2005, 109, 20731. https://doi.org/10.1021/jp052829b
  15. Yoon, J. K.; Kim, K.; Shin, K. S. J. Phys. Chem. C 2009, 113, 1769. https://doi.org/10.1021/jp8089243
  16. Kim, K.; Lee, H. B.; Yoon, J. K.; Shin, D.; Shin, K. S. J. Phys. Chem. C 2010, 114, 13589. https://doi.org/10.1021/jp105005a
  17. Osawa, M.; Matsuda, N.; Yoshii, K.; Uchida, I. J. Phys. Chem. 1994, 98, 12702. https://doi.org/10.1021/j100099a038
  18. Uetsuki, K.; Verma, P.; Yano, T.; Saito, Y.; Ichimura, T.; Kawata, S. J. Phys. Chem. C 2010, 114, 7515. https://doi.org/10.1021/jp9114805
  19. Liu, S.; Zhao, X.; Li, Y.; Zhao, X.; Chen, M. J. Chem. Phys. 2009, 130, 234509. https://doi.org/10.1063/1.3146815
  20. Liu, S.; Zhao, X.; Li, Y.; Zhao, X.; Chen, M. J. Chem. Phys. 2009, 130, 234509. https://doi.org/10.1063/1.3146815
  21. Wu, D. Y.; Liu, X. M.; Huang, Y. F.; Ren, B.; Xu, X.; Tian, Z. Q. J. Phys. Chem. C 2009, 113, 18212. https://doi.org/10.1021/jp9050929
  22. Huang, Y. F.; Zhu, H. P.; Liu, G. K.; Wu, D. Y.; Ren, B.; Tian, Z. Q. J. Am. Chem. Soc. 2010, 132, 9244. https://doi.org/10.1021/ja101107z
  23. Robertson, M. J.; Angelici, R. J. Langmuir 1994, 10, 1488. https://doi.org/10.1021/la00017a028
  24. Kim, K.; Shin, D.; Kim, K. L.; Shin, K. S. Phys. Chem. Chem. Phys. 2010, 12, 3747. https://doi.org/10.1039/b917543a
  25. Shin, D.; Kim, K.; Shin, K. S. ChemPhysChem 2010, 11, 83. https://doi.org/10.1002/cphc.200900780
  26. Kim, K.; Kim, K. L.; Shin, D.; Lee, J. W.; Shin, K. S. Chem. Commun. 2010, 46, 3753. https://doi.org/10.1039/b927587h
  27. Lee, P. C.; Meisel, D. J. Phys. Chem. 1982, 86, 3319.
  28. Sullivan, D. M. Electromagnetic Simulation Using the FDTD Method; IEEE Press: New York, 2000.
  29. Oubre, C.; Nordlander, P.; J. Phys. Chem. B 2004, 108, 17740. https://doi.org/10.1021/jp0473164
  30. Baudhinm, P., Van der Smissen, P., Beauvois, S., Courtoy, P. J., Hayat, M. A., Eds.; Colloidal Gold: Principles, Methods, and Applications; Academic Press: San Diego, 1989; Vol. 2, p 2.
  31. Lyon, L. A.; Musick, M. D.; Natan, M. J. Anal. Chem. 1998, 70, 5177. https://doi.org/10.1021/ac9809940
  32. Lyon, L. A.; Pena, D. J.; Natan, M. J. J. Phys. Chem. B 1999, 103, 5826. https://doi.org/10.1021/jp984739v
  33. Hutter, E.; Cha, S.; Liu, J.-F.; Park, J.; Yi, J.; Fendler, J. H.; Roy, D. J. Phys. Chem. B 2001, 105, 8. https://doi.org/10.1021/jp003565q
  34. Han, H. S.; Han, S. W.; Joo, S. W.; Kim, K. Langmuir 1999, 15, 6868. https://doi.org/10.1021/la990396w
  35. Kim, H. S.; Lee, S. J.; Kim, N. H.; Yoon, J. K.; Park, H. K.; Kim, K. Langmuir 2003, 19, 6701. https://doi.org/10.1021/la026756o
  36. Ontko, A. C.; Angelici, R. J. Langmuir 1998, 14, 1684. https://doi.org/10.1021/la970807d
  37. Gole, A.; Sainkar, S. R.; Sastry, M. Chem. Mater. 2000, 12, 1234. https://doi.org/10.1021/cm990439u
  38. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Chem. Rev. 1999, 99, 2957. https://doi.org/10.1021/cr980133r
  39. Kim, N. H.; Kim, K. J. Phys. Chem. B 2006, 110, 1837. https://doi.org/10.1021/jp055541v
  40. Oklejas, V.; Sjostrom, C.; Harris, J. M. J. Am. Chem. Soc. 2002, 124, 2408 https://doi.org/10.1021/ja017656s
  41. Shankar, S. S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M. Nat. Mater. 2004, 3, 482. https://doi.org/10.1038/nmat1152
  42. Shafai, G. S.; Shetty, S.; Krishnamurty, S.; Shah, V.; Kanhere, D. G. J. Chem. Phys. 2007, 126, 014704. https://doi.org/10.1063/1.2424458
  43. Wasileski, S. A.; Koper, M. T. M.; Weaver, M. J. J. Am. Chem. Soc. 2002, 124, 2796. https://doi.org/10.1021/ja012200w
  44. Cioslowski, J. J. Am. Chem. Soc. 1989, 111, 8333. https://doi.org/10.1021/ja00204a001
  45. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03W, revision C.01; Gaussian: Wallingford, CT, 2004.

Cited by

  1. Enhanced Raman Scattering in Gaps Formed by Planar Au and Au/Ag Alloy Nanoparticles vol.117, pp.21, 2013, https://doi.org/10.1021/jp402746v