DOI QR코드

DOI QR Code

Activation of Toll-like receptor 9 and production of epitope specific antibody by liposome-encapsulated CpG-DNA

  • Kim, Dong-Bum (Department of Microbiology, College of Medicine, Hallym University) ;
  • Kwon, Hyung-Joo (Department of Microbiology, College of Medicine, Hallym University) ;
  • Lee, Young-Hee (Department of Biochemistry, College of Natural Sciences, Chungbuk National University)
  • Received : 2011.05.12
  • Accepted : 2011.05.30
  • Published : 2011.09.30

Abstract

Several investigators have shown that CpG-DNA has outstanding effects as a Th1-responsive adjuvant and that its potent adjuvant effects are enhanced by encapsulation with a liposome of proper composition. In this study, we showed that encapsulation with phosphatidyl-${\beta}$-oleoyl-${\gamma}$-palmitoyl ethanolamine (DOPE): cholesterol hemisuccinate (CHEMS) complex enhances the immunostimulatory activity of CpG DNA and the binding of CpG-DNA to TLR9. We also examined involvement of myeloid differentiation protein (MyD88) and NF-${\kappa}B$ activation in liposome-encapsulated CpG-DNA-induced IL-8 promoter activation. In this manuscript, the natural phosphodiester bond CpG-DNA encapsulated by DOPE : CHEMS complex is designated as Lipoplex(O). Importantly, we successfully screened B cell epitopes of envelope protein (E protein) of hepatitis C virus (HCV-E) and attachment glycoprotein G of human respiratory syncytial virus (HRSV-G) by immunization with complexes of several peptides and Lipoplex(O) without carriers. Therefore, Lipoplex(O) is potentially applicable as a universal adjuvant for peptide-based epitope screening and antibody production.

Keywords

References

  1. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K. and Akira, S. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745. https://doi.org/10.1038/35047123
  2. Krieg, A. M., Yi, A. K., Matson, S., Waldschmidt, T. J., Bishop, G. A., Teasdale, R., Koretzky, G. A. and Klinman, D. M. (1995) CpG motifs in bacterial DNA trigger direct B cell activation. Nature 374, 546-549. https://doi.org/10.1038/374546a0
  3. Ballas, Z. K., Rasmussen, W. L. and Krieg, A. M. (1996) Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J. Immunol. 157, 1840-1845.
  4. Krieg, A. M. (2002) CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709-760. https://doi.org/10.1146/annurev.immunol.20.100301.064842
  5. Klinman, D. M., Yi, A. K., Beaucage, S. L., Conover, J. and Krieg, A. M. (1996) CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon-$\gamma$. Proc. Natl. Acad. Sci. U.S.A. 93, 2879-2883. https://doi.org/10.1073/pnas.93.7.2879
  6. Dong, L., Mori, I., Hossain, M. J., Liu, B. and Kimura, Y. (2003) An immunostimulatory oligodeoxynucleotide containing a cytidine-guanosine motif protects senescenceaccelerated mice from lethal influenza virus by augmenting the T helper type 1 response. J. Gen. Virol. 84, 1623-1628. https://doi.org/10.1099/vir.0.19029-0
  7. Lee, K. W., Lee, Y., Kim, D. S. and Kwon, H. J. (2006) Direct role of NF-κB activation in Toll-like receptor- triggered HLA-DRA expression. Eur. J. Immunol. 36, 1254-1266. https://doi.org/10.1002/eji.200535577
  8. Ballas, Z. K., Krieg, A. M., Warren, T. L., Rasmussen, W. L., Davis, H. L., Waldschmidt, M. and Weiner, G. J. (2001) Divergent therapeutic and immunologic effects of oligodeoxynucleotides with distinct CpG motifs. J. Immunol. 167, 4878-4886. https://doi.org/10.4049/jimmunol.167.9.4878
  9. Krieg, A. M. (2006) Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug. Discov. 5, 471-484. https://doi.org/10.1038/nrd2059
  10. Heikenwalder, M., Polymenidou, M., Junt, T., Sigurdson, C., Wagner, H., Akira, S., Zinkernagel, R. and Aguzzi, A. (2004) Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat. Med. 10, 187-192. https://doi.org/10.1038/nm987
  11. Deng, G. M., Nilsson, I. M., Verdrengh, M., Collins, L. V. and Tarkowski, A. (1999) Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis. Nat. Med. 5, 702-705. https://doi.org/10.1038/9554
  12. Kim, D., Rhee, J. W., Kwon, S., Sohn, W. J., Lee, Y., Kim, D. W., Kim, D. S. and Kwon, H. J. (2009) Immunostimulation and anti-DNA antibody production by backbone modified CpG-DNA. Biochem. Biophys. Res. Commun. 379, 362-367. https://doi.org/10.1016/j.bbrc.2008.12.063
  13. Choi, Y. J., Lee, K. W., Kwon, H. J. and Kim, D. S. (2006) Identification of immunostimulatory oligodeoxynucleotide from Escherichia coli genomic DNA. J. Biochem. Mol. Biol. 39, 788-793. https://doi.org/10.5483/BMBRep.2006.39.6.788
  14. Lee, K. W., Jung, J., Lee, Y., Kim, T. Y., Choi, S. Y., Park, J., Kim, D. S. and Kwon, H. J. (2006) Immunostimulatory oligodeoxynucleotide isolated from genome wide screening of Mycobacterium bovis chromosomal DNA. Mol. Immunol. 43, 2107-2118. https://doi.org/10.1016/j.molimm.2005.12.004
  15. Kim, D., Kwon, S., Rhee, J. W., Kim, K. D., Kim, Y. E, Park C. S., Choi, M. J., Suh, J. G., Kim, D. S., Lee, Y. and Kwon, H. J. (2011) Production of antibodies with peptide- CpG-DNA-liposome complex without carriers. BMC Immunol. 12, 29. https://doi.org/10.1186/1471-2172-12-29
  16. Zhao, Q., Matson, S., Herrera, C. J., Fisher, E., Yu, H. and Krieg, A. M. (1993) Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides. Antisense Res. Dev. 3, 53-66.
  17. Zhao, Q., Waldschmidt, T., Fisher, E., Herrera, C. J. and Krieg, A. M. (1994) Stage-specific oligonucleotide uptake in murine bone marrow B-cell precursors. Blood 84, 3660-3666.
  18. Yasuda, K., Yu, P., Kirschning, C. J., Schlatter, B., Schmitz, F., Heit, A., Bauer, S., Hochrein, H. and Wagner, H. (2005) Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways. J. Immunol. 174, 6129-6136. https://doi.org/10.4049/jimmunol.174.10.6129
  19. Magnusson, M., Tobes, R., Sancho, J. and Pareja, E. (2007) Natural DNA repetitive extragenic sequences from Gram-negative pathogens strongly stimulate TLR9. J. Immunol. 179, 31-35. https://doi.org/10.4049/jimmunol.179.1.31
  20. Kim, D., Rhee, J. W., Kwon, S., Kim, Y. E., Choi, S. Y., Park, J., Lee, Y., and Kwon, H. J. (2010) Enhancement of immunomodulatory activity by liposome-encapsulated natural phosphodiester bond CpG-DNA in a human B cell line. BMB Rep. 43, 250-256. https://doi.org/10.5483/BMBRep.2010.43.4.250

Cited by

  1. A Monoclonal Antibody Against the Human SUMO-1 Protein Obtained by Immunization with Recombinant Protein and CpG-DNA-liposome Complex vol.32, pp.5, 2013, https://doi.org/10.1089/mab.2013.0040
  2. Induction of immunological memory response by vaccination with TM4SF5 epitope-CpG-DNA-liposome complex in a mouse hepatocellular carcinoma model vol.29, pp.2, 2013, https://doi.org/10.3892/or.2012.2130
  3. Prophylactic effect of a peptide vaccine targeting TM4SF5 against colon cancer in a mouse model vol.435, pp.1, 2013, https://doi.org/10.1016/j.bbrc.2013.04.057
  4. Prevention and Therapy of Hepatocellular Carcinoma by Vaccination with TM4SF5 Epitope-CpG-DNA-Liposome Complex without Carriers vol.7, pp.3, 2012, https://doi.org/10.1371/journal.pone.0033121
  5. Effect of epitope-CpG-DNA-liposome complex without carriers on vaccination of respiratory syncytial virus infection vol.57, pp.5, 2014, https://doi.org/10.1007/s13765-014-4215-9
  6. Extracellular Release of CD11b by TLR9 Stimulation in Macrophages vol.11, pp.3, 2016, https://doi.org/10.1371/journal.pone.0150677
  7. Expression of IFN-γ induced by CpG-DNA stimulation in a human myeloid leukemia cell line KG-1 vol.56, pp.5, 2013, https://doi.org/10.1007/s13765-013-3171-0
  8. Monoclonal Antibodies Against the Human Respiratory Syncytial Virus Obtained by Immunization with Epitope Peptides and CpG-DNA-liposome Complex vol.34, pp.2, 2015, https://doi.org/10.1089/mab.2014.0089
  9. Production of epitope-specific antibodies using peptide-CpG-ODN-liposome complex without carriers and their application as a cancer vaccine in mice vol.1, pp.7, 2012, https://doi.org/10.4161/onci.20404
  10. Recent advances in the development of subunit-based RSV vaccines vol.15, pp.1, 2016, https://doi.org/10.1586/14760584.2016.1105134
  11. Therapeutic effect of a TM4SF5-specific peptide vaccine against colon cancer in a mouse model vol.47, pp.4, 2014, https://doi.org/10.5483/BMBRep.2014.47.4.157
  12. Immunization with a Hemagglutinin-Derived Synthetic Peptide Formulated with a CpG-DNA-Liposome Complex Induced Protection against Lethal Influenza Virus Infection in Mice vol.7, pp.11, 2012, https://doi.org/10.1371/journal.pone.0048750
  13. Expression of UNC93A induced by CpG-DNA-liposome complex in mice vol.57, pp.3, 2014, https://doi.org/10.1007/s13765-014-4050-z
  14. Transcutaneous antigen delivery system vol.46, pp.1, 2013, https://doi.org/10.5483/BMBRep.2013.46.1.001
  15. Production of a Monoclonal Antibody Targeting the M Protein of MERS-CoV for Detection of MERS-CoV Using a Synthetic Peptide Epitope Formulated with a CpG–DNA–Liposome Complex pp.1573-3904, 2019, https://doi.org/10.1007/s10989-018-9731-8