References
- Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K. and Akira, S. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745. https://doi.org/10.1038/35047123
- Krieg, A. M., Yi, A. K., Matson, S., Waldschmidt, T. J., Bishop, G. A., Teasdale, R., Koretzky, G. A. and Klinman, D. M. (1995) CpG motifs in bacterial DNA trigger direct B cell activation. Nature 374, 546-549. https://doi.org/10.1038/374546a0
- Ballas, Z. K., Rasmussen, W. L. and Krieg, A. M. (1996) Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J. Immunol. 157, 1840-1845.
- Krieg, A. M. (2002) CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709-760. https://doi.org/10.1146/annurev.immunol.20.100301.064842
-
Klinman, D. M., Yi, A. K., Beaucage, S. L., Conover, J. and Krieg, A. M. (1996) CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon-
$\gamma$ . Proc. Natl. Acad. Sci. U.S.A. 93, 2879-2883. https://doi.org/10.1073/pnas.93.7.2879 - Dong, L., Mori, I., Hossain, M. J., Liu, B. and Kimura, Y. (2003) An immunostimulatory oligodeoxynucleotide containing a cytidine-guanosine motif protects senescenceaccelerated mice from lethal influenza virus by augmenting the T helper type 1 response. J. Gen. Virol. 84, 1623-1628. https://doi.org/10.1099/vir.0.19029-0
- Lee, K. W., Lee, Y., Kim, D. S. and Kwon, H. J. (2006) Direct role of NF-κB activation in Toll-like receptor- triggered HLA-DRA expression. Eur. J. Immunol. 36, 1254-1266. https://doi.org/10.1002/eji.200535577
- Ballas, Z. K., Krieg, A. M., Warren, T. L., Rasmussen, W. L., Davis, H. L., Waldschmidt, M. and Weiner, G. J. (2001) Divergent therapeutic and immunologic effects of oligodeoxynucleotides with distinct CpG motifs. J. Immunol. 167, 4878-4886. https://doi.org/10.4049/jimmunol.167.9.4878
- Krieg, A. M. (2006) Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug. Discov. 5, 471-484. https://doi.org/10.1038/nrd2059
- Heikenwalder, M., Polymenidou, M., Junt, T., Sigurdson, C., Wagner, H., Akira, S., Zinkernagel, R. and Aguzzi, A. (2004) Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat. Med. 10, 187-192. https://doi.org/10.1038/nm987
- Deng, G. M., Nilsson, I. M., Verdrengh, M., Collins, L. V. and Tarkowski, A. (1999) Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis. Nat. Med. 5, 702-705. https://doi.org/10.1038/9554
- Kim, D., Rhee, J. W., Kwon, S., Sohn, W. J., Lee, Y., Kim, D. W., Kim, D. S. and Kwon, H. J. (2009) Immunostimulation and anti-DNA antibody production by backbone modified CpG-DNA. Biochem. Biophys. Res. Commun. 379, 362-367. https://doi.org/10.1016/j.bbrc.2008.12.063
- Choi, Y. J., Lee, K. W., Kwon, H. J. and Kim, D. S. (2006) Identification of immunostimulatory oligodeoxynucleotide from Escherichia coli genomic DNA. J. Biochem. Mol. Biol. 39, 788-793. https://doi.org/10.5483/BMBRep.2006.39.6.788
- Lee, K. W., Jung, J., Lee, Y., Kim, T. Y., Choi, S. Y., Park, J., Kim, D. S. and Kwon, H. J. (2006) Immunostimulatory oligodeoxynucleotide isolated from genome wide screening of Mycobacterium bovis chromosomal DNA. Mol. Immunol. 43, 2107-2118. https://doi.org/10.1016/j.molimm.2005.12.004
- Kim, D., Kwon, S., Rhee, J. W., Kim, K. D., Kim, Y. E, Park C. S., Choi, M. J., Suh, J. G., Kim, D. S., Lee, Y. and Kwon, H. J. (2011) Production of antibodies with peptide- CpG-DNA-liposome complex without carriers. BMC Immunol. 12, 29. https://doi.org/10.1186/1471-2172-12-29
- Zhao, Q., Matson, S., Herrera, C. J., Fisher, E., Yu, H. and Krieg, A. M. (1993) Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides. Antisense Res. Dev. 3, 53-66.
- Zhao, Q., Waldschmidt, T., Fisher, E., Herrera, C. J. and Krieg, A. M. (1994) Stage-specific oligonucleotide uptake in murine bone marrow B-cell precursors. Blood 84, 3660-3666.
- Yasuda, K., Yu, P., Kirschning, C. J., Schlatter, B., Schmitz, F., Heit, A., Bauer, S., Hochrein, H. and Wagner, H. (2005) Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways. J. Immunol. 174, 6129-6136. https://doi.org/10.4049/jimmunol.174.10.6129
- Magnusson, M., Tobes, R., Sancho, J. and Pareja, E. (2007) Natural DNA repetitive extragenic sequences from Gram-negative pathogens strongly stimulate TLR9. J. Immunol. 179, 31-35. https://doi.org/10.4049/jimmunol.179.1.31
- Kim, D., Rhee, J. W., Kwon, S., Kim, Y. E., Choi, S. Y., Park, J., Lee, Y., and Kwon, H. J. (2010) Enhancement of immunomodulatory activity by liposome-encapsulated natural phosphodiester bond CpG-DNA in a human B cell line. BMB Rep. 43, 250-256. https://doi.org/10.5483/BMBRep.2010.43.4.250
Cited by
- A Monoclonal Antibody Against the Human SUMO-1 Protein Obtained by Immunization with Recombinant Protein and CpG-DNA-liposome Complex vol.32, pp.5, 2013, https://doi.org/10.1089/mab.2013.0040
- Induction of immunological memory response by vaccination with TM4SF5 epitope-CpG-DNA-liposome complex in a mouse hepatocellular carcinoma model vol.29, pp.2, 2013, https://doi.org/10.3892/or.2012.2130
- Prophylactic effect of a peptide vaccine targeting TM4SF5 against colon cancer in a mouse model vol.435, pp.1, 2013, https://doi.org/10.1016/j.bbrc.2013.04.057
- Prevention and Therapy of Hepatocellular Carcinoma by Vaccination with TM4SF5 Epitope-CpG-DNA-Liposome Complex without Carriers vol.7, pp.3, 2012, https://doi.org/10.1371/journal.pone.0033121
- Effect of epitope-CpG-DNA-liposome complex without carriers on vaccination of respiratory syncytial virus infection vol.57, pp.5, 2014, https://doi.org/10.1007/s13765-014-4215-9
- Extracellular Release of CD11b by TLR9 Stimulation in Macrophages vol.11, pp.3, 2016, https://doi.org/10.1371/journal.pone.0150677
- Expression of IFN-γ induced by CpG-DNA stimulation in a human myeloid leukemia cell line KG-1 vol.56, pp.5, 2013, https://doi.org/10.1007/s13765-013-3171-0
- Monoclonal Antibodies Against the Human Respiratory Syncytial Virus Obtained by Immunization with Epitope Peptides and CpG-DNA-liposome Complex vol.34, pp.2, 2015, https://doi.org/10.1089/mab.2014.0089
- Production of epitope-specific antibodies using peptide-CpG-ODN-liposome complex without carriers and their application as a cancer vaccine in mice vol.1, pp.7, 2012, https://doi.org/10.4161/onci.20404
- Recent advances in the development of subunit-based RSV vaccines vol.15, pp.1, 2016, https://doi.org/10.1586/14760584.2016.1105134
- Therapeutic effect of a TM4SF5-specific peptide vaccine against colon cancer in a mouse model vol.47, pp.4, 2014, https://doi.org/10.5483/BMBRep.2014.47.4.157
- Immunization with a Hemagglutinin-Derived Synthetic Peptide Formulated with a CpG-DNA-Liposome Complex Induced Protection against Lethal Influenza Virus Infection in Mice vol.7, pp.11, 2012, https://doi.org/10.1371/journal.pone.0048750
- Expression of UNC93A induced by CpG-DNA-liposome complex in mice vol.57, pp.3, 2014, https://doi.org/10.1007/s13765-014-4050-z
- Transcutaneous antigen delivery system vol.46, pp.1, 2013, https://doi.org/10.5483/BMBRep.2013.46.1.001
- Production of a Monoclonal Antibody Targeting the M Protein of MERS-CoV for Detection of MERS-CoV Using a Synthetic Peptide Epitope Formulated with a CpG–DNA–Liposome Complex pp.1573-3904, 2019, https://doi.org/10.1007/s10989-018-9731-8