DOI QR코드

DOI QR Code

Pyridinolysis of Diisopropyl Chlorophosphate in Acetonitrile

  • Received : 2011.07.21
  • Accepted : 2011.07.26
  • Published : 2011.09.20

Abstract

Keywords

References

  1. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. 2010, 23, 1022. https://doi.org/10.1002/poc.1709
  2. Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12. https://doi.org/10.1021/jo990671j
  3. Fischer, A.; Galloway, W. J.; Vaughan, J. J. Chem. Soc. 1964, 3591. https://doi.org/10.1039/jr9640003591
  4. Dean, J. A. Handbook of Organic Chemistry; McGraw- Hill: New York, 1987; Chapter 8.
  5. Castro, E. A.; Freudenberg, M. J. Org. Chem. 1980, 45, 906. https://doi.org/10.1021/jo01293a027
  6. Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y. B. J. Phys. Chem. B 1999, 103, 7302. https://doi.org/10.1021/jp991115w
  7. Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 45. https://doi.org/10.1002/9780470171837.ch2
  8. Hehre, W. J.; Random, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; Chapter 4.
  9. Taft, R. W. Steric Effect in Organic Chemistry, ed. Newman, M. S.; Wiley: New York, 1956; Chapter 3.
  10. Exner, O. Correlation Analysis in Chemistry: Recent Advances; Chapman, N. B., Shorter, J., Eds.; Plenum Press: New York, 1978; p 439.
  11. Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765.
  12. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2008, 21, 544. https://doi.org/10.1002/poc.1314
  13. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 3245. https://doi.org/10.5012/bkcs.2011.32.9.3245
  14. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 936. https://doi.org/10.5012/bkcs.2007.28.6.936
  15. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2009, 22, 425. https://doi.org/10.1002/poc.1478
  16. Dey, N. K.; Lee, H. W. Bull. Korean Chem. Soc. 2010, 31, 1403. https://doi.org/10.5012/bkcs.2010.31.5.1403
  17. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1997. https://doi.org/10.5012/bkcs.2011.32.6.1997
  18. Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
  19. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  20. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
  21. Dey, N. K.; Adhikary, K. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2010, 31, 3856. https://doi.org/10.5012/bkcs.2010.31.12.3856
  22. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 2109. https://doi.org/10.5012/bkcs.2011.32.6.2109
  23. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 2805. https://doi.org/10.5012/bkcs.2011.32.8.2805
  24. Hoque, M. E. U.; Dey, N. K.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 1797. https://doi.org/10.5012/bkcs.2007.28.10.1797
  25. Williams, A. Free Energy Relationships in Organic and Bioorganic Chemistry; RSC: Cambridge, UK, 2003; Chapter 7.
  26. Ruff, A.; Csizmadia, I. G. Organic Reactions Equilibria, Kinetics and Mechanism; Elsevier: Amsterdam, Netherlands, 1994; Chapter 7.
  27. Oh, H. K.; Lee, J. M.; Lee H. W.; Lee, I. Int. J. Chem. Kinet. 2004, 36, 434. https://doi.org/10.1002/kin.20000
  28. Oh, H. K.; Park, J. E.; Lee, H. W. Bull. Korean Chem. Soc. 2004, 25, 1041. https://doi.org/10.5012/bkcs.2004.25.7.1041
  29. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 8995. https://doi.org/10.1021/jo0264269
  30. Castro, E. A.; Angel, M.; Campodonico, P.; Santos, J. G. J. Org. Chem. 2002, 67, 8911. https://doi.org/10.1021/jo026390k
  31. Castro, E. A.; Pavez, P.; Santos, J. G. J. Org. Chem. 2002, 67, 4494. https://doi.org/10.1021/jo0255532
  32. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. .J. Org. Chem. 2002, 67, 3874. https://doi.org/10.1021/jo025637a
  33. Castro, E. A.; Pavez, P.; Santos, J. G. J. Org. Chem. 2002, 67, 3129.
  34. Castro, E. A.; Pavez, P.; Arellano, D.; Santos, J. G. J. Org. Chem. 2001, 66, 6571. https://doi.org/10.1021/jo0101252
  35. Spillane, W. J.; McGrath, P.; Brack, C.; O'Byrne, A. B. J. Org. Chem. 2001, 66, 6313. https://doi.org/10.1021/jo015691b
  36. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 4706. https://doi.org/10.1021/jo000411y
  37. Humeres, E.; Debacher, N. A.; Sierra, M. M. D.; Franco, J. D.; Shutz, A. J. Org. Chem. 1998, 63, 1598. https://doi.org/10.1021/jo971869b
  38. Baynham, A. S.; Hibbert, F.; Malana, M. A. J. Chem. Soc., Perkin Trans 2 1993, 1711.
  39. Adhikary, K. K.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 1135. https://doi.org/10.5012/bkcs.2003.24.8.1135

Cited by

  1. Kinetics and Mechanism of the Pyridinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.270
  2. Pyridinolysis of Bis(N,N-dimethylamino) Phosphinic Chloride in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.309
  3. Pyridinolysis of Dipropyl Chlorothiophosphate in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.325
  4. Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.663
  5. Kinetics and Mechanism of the Pyridinolysis of (2R,4R,5S)-(+)-2-Chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-Sulfide in Acetonitrile vol.33, pp.3, 2012, https://doi.org/10.5012/bkcs.2012.33.3.1047
  6. Kinetics and Mechanism of Pyridinolyses of Ethyl Methyl and Ethyl Propyl Chlorothiophosphates in Acetonitrile vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3372
  7. Pyridinolyses of O-Propyl and O-Isopropyl Phenyl Phosphonochloridothioates in Acetonitrile vol.34, pp.9, 2013, https://doi.org/10.5012/bkcs.2013.34.9.2811
  8. Kinetics and Mechanism of the Pyridinolysis of Bis(2,6-dimethylphenyl) Chlorophosphate in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4179
  9. Kinetics and Mechanism of the Benzylaminolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4304
  10. Kinetics and Mechanism of the Pyridinolysis of Ethylene Phosphorochloridate in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4347
  11. Kinetics and Mechanism of the Pyridinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4387
  12. Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorothiophosphate in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4403
  13. Pyridinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.3, 2011, https://doi.org/10.5012/bkcs.2012.33.3.1055
  14. Kinetics and Mechanism of the Pyridinolysis of Dimethyl Isothiocyanophosphate in Acetonitrile vol.33, pp.7, 2011, https://doi.org/10.5012/bkcs.2012.33.7.2260
  15. Kinetics and Mechanism of Anilinolysis of Phenyl N-Phenyl Phosphoramidochloridate in Acetonitrile vol.33, pp.10, 2011, https://doi.org/10.5012/bkcs.2012.33.10.3274
  16. Pyridinolysis of Phenyl N-Phenyl Phosphoramidochloridate in Acetonitrile vol.33, pp.10, 2011, https://doi.org/10.5012/bkcs.2012.33.10.3437
  17. Pyridinolysis of Dipropyl Chlorophosphate in Acetonitrile vol.33, pp.10, 2012, https://doi.org/10.5012/bkcs.2012.33.10.3441
  18. Kinetics and Mechanism of Anilinolyses of Aryl Methyl and Aryl Propyl Chlorothiophosphates in Acetonitrile vol.35, pp.9, 2011, https://doi.org/10.5012/bkcs.2014.35.9.2797