DOI QR코드

DOI QR Code

Chalcones as Novel Non-peptidic μ-Calpain Inhibitors

  • Lee, Eun-Young (College of Pharmacy & Division of Life & Pharmaceutical Sciences, Ewha Womans University) ;
  • Jang, In-Hye (College of Pharmacy, Catholic University of Daegu) ;
  • Shin, Min-Jung (College of Pharmacy, Catholic University of Daegu) ;
  • Cho, Hee-Ju (College of Pharmacy, Catholic University of Daegu) ;
  • Kim, Jung-Sook (College of Pharmacy, CHA University) ;
  • Eom, Ji-Eun (College of Pharmacy & Division of Life & Pharmaceutical Sciences, Ewha Womans University) ;
  • Kwon, Young-Joo (College of Pharmacy & Division of Life & Pharmaceutical Sciences, Ewha Womans University) ;
  • Na, Young-Hwa (College of Pharmacy, CHA University)
  • Received : 2011.07.21
  • Accepted : 2011.08.02
  • Published : 2011.09.20

Abstract

In order to extend the scaffold of non-peptidic calpain inhibitor, we have designed and synthesized 14 chalcone derivatives categorized into two groups based on their structures. Compounds 7 ($IC_{50}=16.67{\pm}0.42{\mu}M$) and 8 ($IC_{50}=16.92{\pm}0.14{\mu}M$) in group A were most selective ${\mu}$-calpain inhibitor over cathepsins B and L. On the other hand, compound 14 possessing furan ring exhibited inhibitory activities for ${\mu}$-calpain ($IC_{50}=15.39{\pm}1.34{\mu}M$) as well as cathepsin B ($IC_{50}=20.59{\pm}1.35{\mu}M$). The results discovered implicated that chalcone analogues possessing proper size and functional groups can be a potential lead core for selective non-peptidic ${\mu}$-calpain inhibitor. Furthermore, dual inhibitors for ${\mu}$-calpain and cathepsin B can also be developed from chalcones by elaborate structure manipulation.

Keywords

References

  1. Guroff, G. J. Biol. Chem. 1964, 239, 149.
  2. Suzuki, K.; Sorimachi, H.; Yoshizawa, T.; Kinbara, K.; Ishiura, S. Biol. Chem. 1995, 376, 523.
  3. Perrin, B. J.; Huttenlocher, A. Int. J. Biochem. Cell. Biol. 2002, 34, 722. https://doi.org/10.1016/S1357-2725(02)00009-2
  4. Pietsch, M.; Chua, K. C. H.; Abell, A. D. Curr. Top. Med. Chem. 2010, 10, 270. https://doi.org/10.2174/156802610790725489
  5. Reverter, D.; Sorimachi, H.; Bode, W. Trends Cardiovasc. Med. 2001, 11, 222. https://doi.org/10.1016/S1050-1738(01)00112-8
  6. Dutt, P.; Spriggs, C. N.; Davies, P. L.; Jia, Z.; Elce, J. S. Biochem. J. 2002, 367, 263. https://doi.org/10.1042/BJ20020485
  7. Carragher, N. O. Curr. Pharm. Des. 2006, 12, 615. https://doi.org/10.2174/138161206775474314
  8. Chong, Z. Z.; Li, F.; Maiese, K. Brain Res. Rev. 2005, 49, 1. https://doi.org/10.1016/j.brainresrev.2004.11.005
  9. Abell, A. D.; Jones, M. A.; Neffe, A. T.; Aitken, S. G.; Cain, T. P.; Payne, R. J.; McNabb, S. B.; Coxon, J. M.; Stuart, B. G.; Pearson, D.; Lee, H. Y. Y.; Morton, J. D. J. Med. Chem. 2007, 50, 2916. https://doi.org/10.1021/jm061455n
  10. Donkor, I. O.; Assefa, H.; Liu, J. J. Med. Chem. 2008, 51, 4346. https://doi.org/10.1021/jm800182c
  11. Zhang Y.; Jung, S. Y.; Jin, C.; Kim, N. D.; Gong, P.; Lee, Y. S. Bioorg. Med. Chem. Lett. 2009, 19, 502. https://doi.org/10.1016/j.bmcl.2008.11.030
  12. Wang, K. K.W.; Yuen, P.-W. Adv. Pharmacol. 1997, 37, 117.
  13. Graybill, T. L.; Dolle, R. E.; Osifo, I. K.; Schmidt, S. J.; Gregory, J. S.; Harris, A. L.; Miller, A. M. Bioorg. Med. Chem. Lett. 1995, 5, 387. https://doi.org/10.1016/0960-894X(95)00041-Q
  14. Kim, H. J.; Lee, J. Y.; Kim, S. M.; Park, D.-A.; Jin, C.; Hong, S. P.; Lee, Y. S. Fitoterapia 2009, 80, 73. https://doi.org/10.1016/j.fitote.2008.10.003
  15. Lee, K. S.; Seo, S. H.; Lee, Y. H.; Kim, D. H.; Son, M. H.; Chung, B. Y.; Lee, J. Y.; Jin, C.; Lee, Y. S. Bioorg. Med. Chem. Lett. 2005, 15, 2857. https://doi.org/10.1016/j.bmcl.2005.03.095
  16. Nielsen, S. F.; Chen, M.; Theander, T. G.; Kharazmi, A.; Christensen, S. B. Bioorg. Med. Chem. Lett. 1995, 5, 449. https://doi.org/10.1016/0960-894X(95)00053-V
  17. Kang, D.-H.; Jun, K.-Y.; Lee, J. P.; Pak, C. S.; Na, Y.; Kwon, Y. J. Med. Chem. 2009, 52, 3093. https://doi.org/10.1021/jm8014734
  18. Cuerrier, D.; Moldoveanu, T.; Campbell, R. L.; Kelly, J.; Yoruk, B.; Verhelst, S. H.; Greenbaum, D.; Bogyo, M.; Davies, P. L. J. Biol. Chem. 2007, 282, 9600. https://doi.org/10.1074/jbc.M610372200
  19. Liu, X.; Go, M. L. Bioorg. Med. Chem. 2006, 14, 153. https://doi.org/10.1016/j.bmc.2005.08.006
  20. Modzelewska, A.; Pettit, C.; Achanta, G.; Davidson, N. E.; Huang, P.; Khan, S. R. Bioorg. Med. Chem. 2006, 14, 3491. https://doi.org/10.1016/j.bmc.2006.01.003
  21. Ni, L.; Meng, Q. M.; Siroski, J. A. Expert Opin. Ther. Pat. 2004, 14, 1669. https://doi.org/10.1517/13543776.14.12.1669

Cited by

  1. Identification of Chalcones as Fasciola hepatica Cathepsin L Inhibitors Using a Comprehensive Experimental and Computational Approach vol.10, pp.7, 2016, https://doi.org/10.1371/journal.pntd.0004834
  2. Bioinspired Diastereoconvergent Synthesis of the Tricyclic Core of Palodesangrens via Diels-Alder Reaction, LiAlH4-Mediated Isomerization, and Acid-Mediated Cyclization vol.83, pp.9, 2011, https://doi.org/10.1021/acs.joc.8b00668