References
- Caturla, N.; Vera-Samper, E.; Villalain, J.; Mateo, C. R.; Micol, V. Free radical Biol. and Med. 2003, 34(6), 648. https://doi.org/10.1016/S0891-5849(02)01366-7
- Yang, C. S.; Chung, J. Y.; Yang, G.; Chhabra, S. K.; Lee, M. J. J. Nutr. 2000, 130, 472.
- Yang, C. S.; Landau, J. M.; Huang, M. T.; Newmark, H. L. Annu. Rev. Nutr. 2001, 21, 381. https://doi.org/10.1146/annurev.nutr.21.1.381
- McKay, D. L.; Blumberg, J. B. J. Am. Coll. Nutr. 2002, 21, 1. https://doi.org/10.1080/07315724.2002.10719187
- Wang, H.; Provan, G. J.; Helliwell, K. Trends food Sci. Tech. 2000, 11, 152. https://doi.org/10.1016/S0924-2244(00)00061-3
- Rice-Evans, C. Biochem. Soc. Symp. 1995, 61, 103.
- Gradisar, H.; Pristovsek, P.; Plaper, A.; Jerala, R. J. Med. Chem. 2007, 50, 264. https://doi.org/10.1021/jm060817o
- Katiyar, S.; Elmets, C. A.; Katiyar, S. K. J. Nutr. Biochem. 2007, 18, 287. https://doi.org/10.1016/j.jnutbio.2006.08.004
- Frankel, E. N. J. Agric. Food Chem. 1995, 43, 890. https://doi.org/10.1021/jf00052a008
- Torreggiani, A.; Jurasekova, Z.; Sanchez-Cortes, S.; Tamba, M. Journal of Raman Spectroscopy 2008, 39, 265. https://doi.org/10.1002/jrs.1849
- Park, H. R.; Liu, H. B.; Shin, S. C.; Park, J. K.; Bark, K. M. Bull. Korean. Chem. Soc. 2011 32, 981. https://doi.org/10.5012/bkcs.2011.32.3.981
- Jovanovic, S. V.; Hara, Y.; Steenken, S.; Simic, M. G. J. Am. Chem. Soc. 1995, 117, 9881. https://doi.org/10.1021/ja00144a014
- Jovanovic, S. V.; Steenken, S.; Simic, M. G.; Hara, Y. Flavonoids in Health and Disease; Rice-Evans, C. A., Packer, L., Eds.; Marcel Dekker, Inc.: New York, U.S.A., 1998; p 137.
- Bors, W.; Heller, W.; Michel, C.; Saran, M. Methods. Enzymol. 1990, 186, 343. https://doi.org/10.1016/0076-6879(90)86128-I
- Sies, H. Eur. J. Biochem. 1993, 215, 213. https://doi.org/10.1111/j.1432-1033.1993.tb18025.x
- Komatsu, Y.; Suematsu, S.; Hisanobu, Y.; Saigo, H.; Matsuda, R.; Hara, K. Bioscience Biotechnology & Biochemistry 1993, 57, 907. https://doi.org/10.1271/bbb.57.907
- Jovanovic, S. V.; Simic, M. G.; Steenken, S.; Hara, Y. J. Chem. Soc. Perkin Trans 1998, 2, 2365.
- Eaton, D. F. Reference Compounds for Fluorescence Measurement; IUPAC Organic Chem. Division: Wilmington, U.S.A., 1987; p 1.
- Bark, K. M.; Force, R. K. Spectrochim. Acta 1993, 49(A), 1605. https://doi.org/10.1016/0584-8539(93)80117-S
- Demas, J. N.; Grosby, G. A. J. Phys. Chem. 1971, 75, 2463. https://doi.org/10.1021/j100685a009
- Morrison, R. T.; Boyd, R. N. Organic Chemistry, 3th ed.; Allyn and Bacon, Inc.: Boston, USA, 1973; p 798.
- Gichinga, M. G.; Striegler, S. J. Amer. Chem. Soc. 2008, 130, 5150. https://doi.org/10.1021/ja078057+
- Koval, I. A.; Gamez, P.; Belle, C.; Selmeczi, K.; Reedijk, J. J. Chem. Soc. Rev. 2006, 35, 814. https://doi.org/10.1039/b516250p
- Belle, C.; Selmeczi, K.; Torelli, S.; Pierre, J.-L. C. R. Chim. 2007, 10, 271. https://doi.org/10.1016/j.crci.2006.10.007
- Kim, E.; Chufan, E. E.; Kamaraj, K.; Karlin, K. D. Chem. Rev. 2004, 104, 1077. https://doi.org/10.1021/cr0206162
- Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047. https://doi.org/10.1021/cr020633r
- Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Plenum Press: New York, USA, 1983; p 257.
Cited by
- Studies on the Interaction between Catechin and Metal Ions vol.33, pp.12, 2012, https://doi.org/10.5012/bkcs.2012.33.12.4235
- Tuning a 96-Well Microtiter Plate Fluorescence-Based Assay to Identify AGE Inhibitors in Crude Plant Extracts vol.18, pp.11, 2013, https://doi.org/10.3390/molecules181114320
- The Spectral Properties of (-)-Epigallocatechin 3-O-Gallate (EGCG) Fluorescence in Different Solvents: Dependence on Solvent Polarity vol.8, pp.11, 2013, https://doi.org/10.1371/journal.pone.0079834
- Influence of Temperature on the Distribution of Catechin in Corn Oil-in-Water Emulsions and Some Relevant Thermodynamic Parameters vol.9, pp.4, 2014, https://doi.org/10.1007/s11483-014-9332-9
- Determination of Total Phenolic Compounds in Common Beverages Using CdTe Quantum Dots vol.41, pp.2, 2016, https://doi.org/10.1111/jfpp.12863
- Tea polyphenols: Enzyme inhibition effect and starch digestibility vol.69, pp.7-8, 2016, https://doi.org/10.1002/star.201600195
- Efficient functionalisation of dextran-aldehyde with catechin: potential applications in the treatment of cancer vol.7, pp.14, 2016, https://doi.org/10.1039/C6PY00228E
- Forecasting and evaluating antioxidant properties of fruit, and vegetable, juices using polarization curves vol.41, pp.6, 2017, https://doi.org/10.1111/jfpp.13225
- Electrochemical Study of Trametes Versicolor Laccase Compatibility to Different Polyphenolic Substrates vol.5, pp.1, 2017, https://doi.org/10.3390/chemosensors5010009
- Versatile oligomers and polymers from flavonoids – a new approach to synthesis vol.8, pp.15, 2017, https://doi.org/10.1039/C7PY00325K
- Tuned synthesis of doped rare-earth orthovanadates for enhanced luminescence vol.4, pp.9, 2011, https://doi.org/10.1039/c3ra44979c
- Spectroscopic Study on the Anti-oxidant Properties of Flavonoid Galangin vol.15, pp.4, 2011, https://doi.org/10.20402/ajbc.2017.0146
- Green Tea and Struvite Crystals in Relation to Infectious Urinary Stones: The Role of (−)-Epicatechin vol.17, pp.11, 2011, https://doi.org/10.1021/acs.cgd.7b01043
- Evaluation of a Novel Collagenous Matrix Membrane Cross-Linked with Catechins Catalyzed by Laccase: A Sustainable Biomass vol.67, pp.5, 2011, https://doi.org/10.1021/acs.jafc.8b05810
- Effect of (−)-Epicatechin on Poorly Crystalline and Amorphous Precipitate. The Role of Green Tea Compound in the Formation of Infectious Urinary Stones vol.20, pp.1, 2020, https://doi.org/10.1021/acs.cgd.9b00936
- Color determination method and evaluation of methods for the detection of cannabinoids by thin‐layer chromatography (TLC) vol.66, pp.3, 2021, https://doi.org/10.1111/1556-4029.14659
- Electrochemical and Computational Examination of Camellia Sinensis Assamica Biomolecules Ability to Retard Mild Steel Corrosion in Sodium Chloride Solutions vol.8, pp.1, 2011, https://doi.org/10.1007/s40735-021-00611-7