DOI QR코드

DOI QR Code

Cytotoxic Potentials of Tellurium Nanowires in BALB/3T3 Fibroblast Cells

  • Mahto, Sanjeev Kumar (Green Home Energy Technology Research Center and Department of Chemistry, Kongju National University) ;
  • Vinod, T.P. (Green Home Energy Technology Research Center and Department of Chemistry, Kongju National University) ;
  • Kim, Jin-Kwon (Green Home Energy Technology Research Center and Department of Chemistry, Kongju National University) ;
  • Rhee, Seog-Woo (Green Home Energy Technology Research Center and Department of Chemistry, Kongju National University)
  • Received : 2011.06.13
  • Accepted : 2011.07.29
  • Published : 2011.09.20

Abstract

We have investigated the cytotoxic potential of tellurium (Te) nanowires in BALB/3T3 fibroblast cells. Te nanowires were synthesized through an aqueous phase surfactant assisted method. Toxicological experiments, such as analysis of morphological changes, MTT assay, DAPI staining, and estimation of intracellular reactive oxygen species, were carried out to reveal the cytotoxic effects of Te nanowires. Te nanowires were found to be cytotoxic at all concentrations tested, in a dose-dependent manner. The UV/Vis spectra of Te nanowires suspended in a culture medium showed drastic changes and disappearance of two broad absorption peaks. The physicochemical properties such as, surface charge, size, and shape of Te nanowires were found to be altered during exposure of cells, due to the instability and agglomeration of nanowires in the culture medium. These results suggest that the chemical components of the DMEM medium significantly affect the stability of Te nanowires. In addition, TEM images revealed that necrosis was the basic pattern of cell death, which might stem from the formation of toxic moieties of tellurium, released from nanowire structures, in the bioenvironment. These observations thus suggest that Te nanomaterials may pose potential risks to environmental and human health.

Keywords

References

  1. Oberdorster, G.; Stone, V.; Donaldson, K. Nanotoxicology 2007, 1, 2. https://doi.org/10.1080/17435390701314761
  2. Oberdorster, G.; Oberdorster, E.; Oberdörster, J. Environ. Health Perspect. 2005, 113, 823. https://doi.org/10.1289/ehp.7339
  3. Lauterwasser, C. Small sizes that matter: opportunities and risks of nanotechnologies, report in co-operation with the OECD International Futures Programme, accessed on 13 November 2008.
  4. Donaldson, K.; Stone, V.; Tran, C. L.; Kreyling, W.; Borm, P. J. A. Occup. Environ. Med. 2004, 61, 727. https://doi.org/10.1136/oem.2004.013243
  5. Zheng, R.; Cheng, W.; Wang, E.; Dong, S. Chem. Phys. Lett. 2004, 395, 302. https://doi.org/10.1016/j.cplett.2004.07.091
  6. Liu, Z.; Hu, Z.; Xie, Q.; Yang, B.; Wu, J.; Qian, Y. J. Mater. Chem. 2002, 13, 159.
  7. Mayers, B.; Xia, Y. Adv. Mater. 2002, 14, 279. https://doi.org/10.1002/1521-4095(20020219)14:4<279::AID-ADMA279>3.0.CO;2-2
  8. Chen, X.; Wang, Z.; Wang, X.; Wan, J.; Qian, Y. Appl. Phys. A 2005, 80, 1443. https://doi.org/10.1007/s00339-004-3004-4
  9. Liang, F.; Qian, H. Mater. Chem. Phys. 2009, 113, 523. https://doi.org/10.1016/j.matchemphys.2008.07.101
  10. Liu, L.; Zhang, J.; Su, X.; Mason, R. P. J. Biomed. Nanotechnol. 2008, 4, 524. https://doi.org/10.1166/jbn.2008.018
  11. Yu, H.; Gibbons, P. C.; Buhro, W. E. J. Mater. Chem. 2004, 14, 595. https://doi.org/10.1039/b312820b
  12. Ogra, Y. Anal. Sci. 2009, 25, 1189. https://doi.org/10.2116/analsci.25.1189
  13. Ding, W. J.; Hasegawa, T.; Peng, D.; Hosaka, H.; Seko, Y. J. Trace Elem. Med. Biol. 2002, 6, 99.
  14. Deuticke, B.; Lutkemeier, P.; Poser, B. Biochim. Biophys. Acta 1992, 1109, 97. https://doi.org/10.1016/0005-2736(92)90192-O
  15. Sailer, B. L.; Liles, N.; Dickerson, S.; Chasteen, T. G. Arch. Toxicol. 2003, 77, 30. https://doi.org/10.1007/s00204-002-0407-x
  16. Hartung, T.; Bremer, S.; Casati, S.; Coecke, S.; Corvi, R.; Fortaner, S.; Gribaldo, L.; Halder, M.; Roi, A. J.; Prieto, P.; Sabbioni, E.; Worth, A.; Zuang, V. Altern. Lab. Anim. 2003, 31, 473.
  17. Mazzotti, F.; Sabbioni, E.; Ghiani, M.; Cocco, B.; Ceccatelli, R.; Fortaner, S. Altern. Lab. Anim. 2001, 29, 601.
  18. Ponti, J.; Sabbioni, E.; Munaro, B.; Broggi, F.; Marmorato, P.; Franchini, F.; Colognato, R.; Rossi, F. Mutagen. 2009, 24, 439. https://doi.org/10.1093/mutage/gep027
  19. Vinod, T. P.; Yang, M.; Kim, J.; Kotov, N. A. Langmuir 2009, 25, 13545. https://doi.org/10.1021/la901093c
  20. Gautam, U. K.; Rao, C. N. R. J. Mater. Chem. 2004, 14, 2530. https://doi.org/10.1039/b405006a
  21. Liu, H.; Liu, S.; Huang, K. Mater. Lett. 2008, 62, 1983. https://doi.org/10.1016/j.matlet.2007.10.058
  22. Qian, H. S.; Yu, S. H.; Gong, J. Y.; Luo, L. B.; Fei, L. F. Langmuir 2006, 22, 3830. https://doi.org/10.1021/la053021l
  23. Fendler, J. H. Chem. Mater. 1996, 8, 1616. https://doi.org/10.1021/cm960116n
  24. Cunha, R. L. O. R.; Gouvea, I. E.; Juliano, L. An. Acad. Bras. Cienc. 2009, 81, 393. https://doi.org/10.1590/S0001-37652009000300006
  25. Chasteen, T. G.; Bentley, R. Chem. Rev. 2003, 103, 1. https://doi.org/10.1021/cr010210+

Cited by

  1. Optical and Electrical Studies of Vertically Oriented Tellurium Nanowire Arrays Produced by Template Electrodeposition vol.44, pp.8, 2015, https://doi.org/10.1007/s11664-015-3778-5
  2. A review of the ecotoxicological effects of nanowires vol.12, pp.3, 2015, https://doi.org/10.1007/s13762-014-0727-4
  3. Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods vol.11, pp.11, 2018, https://doi.org/10.3390/ma11112081
  4. Assessment of the dose-dependent biochemical and cytotoxicity of zein-coated MgO nanowires in male and female albino rats vol.53, pp.1, 2021, https://doi.org/10.1080/07853890.2021.1991587