DOI QR코드

DOI QR Code

Spectroscopic and Morphological Investigation of Copper Oxide Thin Films Prepared by Magnetron Sputtering at Various Oxygen Ratios

  • Park, Ju-Yun (Department of Chemistry, Pukyong National University) ;
  • Lim, Kyoung-A (Department of Physics, The University of Akron) ;
  • Ramsier, Rex D. (Department of Physics, The University of Akron) ;
  • Kang, Yong-Cheol (Department of Chemistry, Pukyong National University)
  • Received : 2011.06.22
  • Accepted : 2011.07.29
  • Published : 2011.09.20

Abstract

Copper oxide thin films were synthesized by reactive radio frequency magnetron sputtering at different oxygen gas ratios. The chemical and physical properties of the thin films were investigated by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). XPS results revealed that the dominant oxidation states of Cu were $Cu^0$ and $Cu^+$ at 0% oxygen ratio. When the oxygen ratios increased above 5%, Cu was oxidized as CuO as detected by X-ray induced Auger electron spectroscopy and the $Cu(OH)_2$ phase was confirmed independent of the oxygen ratio. The valence band maxima were $1.19{\pm}0.09$ eV and an increase in the density of states was confirmed after formation of CuO. The thickness and roughness of copper oxide thin films decreased with increasing oxygen ratio. The crystallinity of the copper oxide films changed from cubic Cu through cubic $Cu_2O$ to monoclinic CuO with mean crystallite sizes of 8.8 nm (Cu) and 16.9 nm (CuO) at the 10% oxygen ratio level.

Keywords

References

  1. Qu, X. P.; Tan, J. J.; Zhou, M.; Chen, T.; Xie, Q.; Ru, G. P. Appl. Phys. Lett. 2006, 88, 151912. https://doi.org/10.1063/1.2195112
  2. Yan, M. Y.; Suh, J. O.; Ren, F.; Tu, K. N.; Vairagar, A. V.; Mhaisalkar, S. G. Appl. Phys. Lett. 2005, 87, 211103. https://doi.org/10.1063/1.2132536
  3. Park, C. W.; Vook, R. W. Appl. Phys. Lett. 1991, 59, 175. https://doi.org/10.1063/1.106011
  4. Murarka, S. P.; Gutmann, R. J.; Kaloeros, A. E.; Lanford, W. A. Thin Solid Films 1993, 236, 257. https://doi.org/10.1016/0040-6090(93)90680-N
  5. Suzuki, S.; Ishikawa, Y.; Isshiki, M.; Waseda, Y. Mater. Trans. JIM 1997, 38, 1004. https://doi.org/10.2320/matertrans1989.38.1004
  6. Gong, Y. S.; Lee, C.; Yang, C. K. J. Appl. Phys. 1995, 77, 5422. https://doi.org/10.1063/1.359234
  7. Laurie, A. B.; Norton, M. L. Mater. Res. Bull. 1989, 24, 213. https://doi.org/10.1016/0025-5408(89)90128-1
  8. Laurie, A. B.; Norton, M. L. Mater. Res. Bull. 1989, 24, 1521. https://doi.org/10.1016/0025-5408(89)90163-3
  9. Ottosson, M.; Carlsson, J. O. Surf. Coat. Technol. 1996, 78, 263. https://doi.org/10.1016/0257-8972(95)02415-8
  10. Santra, K.; Sarkar, C. K.; Mukheriee, M. K.; Ghosh, B. Thin Solid Films 1992, 213, 226. https://doi.org/10.1016/0040-6090(92)90286-K
  11. Drobny, V. F.; Palfrey, D. L. Thin Solid Films 1979, 61, 89. https://doi.org/10.1016/0040-6090(79)90504-2
  12. Prater, W. L.; Allen, E. L.; Lee, W. Y.; Toney, M. F.; Kellock, A.; Daniels, J. S. J. Appl. Phys. 2005, 97, 093301. https://doi.org/10.1063/1.1886275
  13. Pletea, M.; Bruckner, W.; Wendrock, H.; Kaltofen, R. J. Appl. Phys. 2005, 97, 054908. https://doi.org/10.1063/1.1858062
  14. Ma, C. Y.; Lapostolle, F.; Briois, P.; Zhang, Q. Y. Appl. Surf. Sci. 2007, 53, 8718.
  15. Borg, H. J.; van den Oetelaar, C. C. A.; van Ijzendoorn, L. J.; Niemantsverdriet, J. W. J. Vac. Sci. Technol. A 1992, 10, 2737. https://doi.org/10.1116/1.577902
  16. Morales, J.; Caballero, A.; Holgado, J. P.; Espinos, J. P.; Gonzalez-Elipe, A. R. J. Phys. Chem. B 2002, 106, 10185. https://doi.org/10.1021/jp026082q
  17. Ai, Z.; Zhang, L.; Lee, S.; Ho, W. J. Phys. Chem. C 2009, 113, 20896. https://doi.org/10.1021/jp9083647
  18. Yoon, K. H.; Choi, W. J.; Kang, D. H. Thin Solid Films 2000, 372, 250. https://doi.org/10.1016/S0040-6090(00)01058-0
  19. Lee, S. Y.; Nguyen, M. N.; Sun, Y. M.; White, J. M. Appl. Surf. Sci. 2003, 206, 102. https://doi.org/10.1016/S0169-4332(02)01239-4
  20. Long, J.; Dong, J.; Wang, X.; Ding, Z.; Zhang, Z.; Wu, L.; Li, Z.; Fu, X. J. Colloid Interface Sci. 2009, 333, 791. https://doi.org/10.1016/j.jcis.2009.02.036
  21. Zhang, G.; Long, J.; Wang, X.; Dai, W.; Li, Z.; Wu, L.; Fu, X. New J. Chem. 2009, 33, 2044. https://doi.org/10.1039/b906352h
  22. Galakhov, V. R.; Peteryaev, A. I.; Kurmaev, E. Z.; Anisimov, V. I. Phys. Rev. B 1007, 56, 4584.
  23. Learmonth, T.; McGuinness, C.; Glans, P. A.; Kennedy, B.; John, J. S.; Guo, J. H.; Greenblatt, M.; Smith, K. E. Phys. Rev. B 2009, 79, 8.
  24. Scanlon, D. O.; Watson, G. W.; Payne, D. J.; Atkinson, G. R.; Egdell, R. G.; Law, D. S. L. J. Phys. Chem. C 2010, 114, 4636. https://doi.org/10.1021/jp9093172
  25. Bebensee, F.; Voigts, F.; Maus-Friedrichs, W. Surf. Sci. 2008, 602, 1622. https://doi.org/10.1016/j.susc.2008.02.011
  26. Yu, Q.; Ma, X.; Lan, Z.; Wang, M.; Yu, C. J. Phys. Chem. C 2009, 113, 6969. https://doi.org/10.1021/jp809564c
  27. Nakano, Y.; Saeki, S.; Morikawa, T. Appl. Phys. Lett. 2009, 94, 022111. https://doi.org/10.1063/1.3072804
  28. Langford, J. I.; Wilson, A. J. C. J. Appl. Cryst. 1978, 11, 102. https://doi.org/10.1107/S0021889878012844
  29. Tsai, D.-C.; Huang, Y.-L.; Lin, S.-R.; Liang, S.-C.; Shieu, F.-S. Appl. Surf. Sci. 2010, 257, 1361. https://doi.org/10.1016/j.apsusc.2010.08.078

Cited by

  1. Detection of H2S Gas with CuO Nanowire Sensor vol.25, pp.5, 2015, https://doi.org/10.3740/MRSK.2015.25.5.238
  2. Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air vol.5, pp.4, 2015, https://doi.org/10.1039/C4CY01622J
  3. Influence of the surface morphology and structure on the gas-sorption properties of SiO2CuO x nanocomposite materials: X-ray spectroscopy investigations vol.57, pp.2, 2015, https://doi.org/10.1134/S1063783415020328
  4. Correlation between Deposition Parameters and Hydrogen Production in CuO Nanostructured Thin Films vol.32, pp.6, 2016, https://doi.org/10.1021/acs.langmuir.5b03917
  5. Self-Supported Cu-Based Nanowire Arrays as Noble-Metal-Free Electrocatalysts for Oxygen Evolution vol.9, pp.16, 2016, https://doi.org/10.1002/cssc.201600592
  6. Unique properties of silver and copper silica-based nanocomposites as antimicrobial agents vol.7, pp.45, 2017, https://doi.org/10.1039/C7RA00720E
  7. A Facile and Very Effective Method to Enhance the Mechanical Strength and the Cyclability of Si-Based Electrodes for Li-Ion Batteries pp.16146832, 2017, https://doi.org/10.1002/aenm.201701787
  8. Note: A method for minimizing oxide formation during elevated temperature nanoindentation vol.85, pp.9, 2014, https://doi.org/10.1063/1.4895006
  9. A Comparative Study on Structural Growth of Copper Oxide Deposited by dc-MS and HiPIMS vol.5, pp.10, 2016, https://doi.org/10.1149/2.0251610jss
  10. O) subjected to ageing conditions for photovoltaic applications vol.123, pp.8, 2018, https://doi.org/10.1063/1.5017538
  11. Copper Oxide Nanograss for Efficient and Stable Photoelectrochemical Hydrogen Production by Water Splitting vol.47, pp.3, 2018, https://doi.org/10.1007/s11664-017-5966-y
  12. thin films for optoelectronic application vol.6, pp.2, 2018, https://doi.org/10.1088/2053-1591/aaf217
  13. The impact of size effects on the electrochemical behaviour of Cu2O-coated Cu nanopillars for advanced Li-ion microbatteries vol.2, pp.25, 2011, https://doi.org/10.1039/c4ta01361a
  14. Gas phase hydrodechlorination of CCl4 over Pd-Cu and Pd-Fe bimetallic catalysts supported on an AlF3 matrix vol.41, pp.1, 2011, https://doi.org/10.3184/146867816x14490551502250
  15. Nonlinear electronic transport and enhanced catalytic behavior caused by native oxides on Cu nanowires vol.663, pp.None, 2017, https://doi.org/10.1016/j.susc.2017.04.011
  16. Synthesis of Cu–Cr diketo, sublimable, eutectic composite complex, rod crystals from LDH as suitable MOCVD precursor of CuCr2O4 catalysts upon ceramic preforms for N vol.7, pp.None, 2011, https://doi.org/10.1016/j.mtchem.2017.12.001
  17. CuO-CeO2 nanocomposite catalysts produced by mechanochemical synthesis vol.9, pp.6, 2019, https://doi.org/10.1063/1.5109067
  18. Modification of MgAl2O4 Electron-Optic Properties by Pulsed Ion Beam vol.82, pp.11, 2011, https://doi.org/10.1134/s1063778819110206
  19. Structure, optical, and morphological investigations of nano copper oxide prepared using RPLD at different laser wavelength effects vol.42, pp.p5, 2021, https://doi.org/10.1016/j.matpr.2020.12.569
  20. Annealing enhancement in stability and performance of copper modified boron-doped diamond (Cu-BDD) electrode for electrochemical nitrate reduction vol.114, pp.None, 2011, https://doi.org/10.1016/j.diamond.2021.108310
  21. Comparative study of CO2 photoreduction using different conformations of CuO photocatalyst: Powder, coating on mesh and thin film vol.50, pp.None, 2011, https://doi.org/10.1016/j.jcou.2021.101588
  22. Reduction of copper surface oxide using a sub-atmospheric dielectric barrier discharge plasma vol.573, pp.None, 2011, https://doi.org/10.1016/j.apsusc.2021.151568
  23. Oxygen flow rate effect on copper oxide thin films deposited by radio frequency magnetron sputtering vol.741, pp.None, 2011, https://doi.org/10.1016/j.tsf.2021.139013
  24. Thermal oxidation impact on the optoelectronic and hydrogen sensing properties of p-type copper oxide thin films vol.147, pp.None, 2011, https://doi.org/10.1016/j.materresbull.2021.111646