References
- Qu, X. P.; Tan, J. J.; Zhou, M.; Chen, T.; Xie, Q.; Ru, G. P. Appl. Phys. Lett. 2006, 88, 151912. https://doi.org/10.1063/1.2195112
- Yan, M. Y.; Suh, J. O.; Ren, F.; Tu, K. N.; Vairagar, A. V.; Mhaisalkar, S. G. Appl. Phys. Lett. 2005, 87, 211103. https://doi.org/10.1063/1.2132536
- Park, C. W.; Vook, R. W. Appl. Phys. Lett. 1991, 59, 175. https://doi.org/10.1063/1.106011
- Murarka, S. P.; Gutmann, R. J.; Kaloeros, A. E.; Lanford, W. A. Thin Solid Films 1993, 236, 257. https://doi.org/10.1016/0040-6090(93)90680-N
- Suzuki, S.; Ishikawa, Y.; Isshiki, M.; Waseda, Y. Mater. Trans. JIM 1997, 38, 1004. https://doi.org/10.2320/matertrans1989.38.1004
- Gong, Y. S.; Lee, C.; Yang, C. K. J. Appl. Phys. 1995, 77, 5422. https://doi.org/10.1063/1.359234
- Laurie, A. B.; Norton, M. L. Mater. Res. Bull. 1989, 24, 213. https://doi.org/10.1016/0025-5408(89)90128-1
- Laurie, A. B.; Norton, M. L. Mater. Res. Bull. 1989, 24, 1521. https://doi.org/10.1016/0025-5408(89)90163-3
- Ottosson, M.; Carlsson, J. O. Surf. Coat. Technol. 1996, 78, 263. https://doi.org/10.1016/0257-8972(95)02415-8
- Santra, K.; Sarkar, C. K.; Mukheriee, M. K.; Ghosh, B. Thin Solid Films 1992, 213, 226. https://doi.org/10.1016/0040-6090(92)90286-K
- Drobny, V. F.; Palfrey, D. L. Thin Solid Films 1979, 61, 89. https://doi.org/10.1016/0040-6090(79)90504-2
- Prater, W. L.; Allen, E. L.; Lee, W. Y.; Toney, M. F.; Kellock, A.; Daniels, J. S. J. Appl. Phys. 2005, 97, 093301. https://doi.org/10.1063/1.1886275
- Pletea, M.; Bruckner, W.; Wendrock, H.; Kaltofen, R. J. Appl. Phys. 2005, 97, 054908. https://doi.org/10.1063/1.1858062
- Ma, C. Y.; Lapostolle, F.; Briois, P.; Zhang, Q. Y. Appl. Surf. Sci. 2007, 53, 8718.
- Borg, H. J.; van den Oetelaar, C. C. A.; van Ijzendoorn, L. J.; Niemantsverdriet, J. W. J. Vac. Sci. Technol. A 1992, 10, 2737. https://doi.org/10.1116/1.577902
- Morales, J.; Caballero, A.; Holgado, J. P.; Espinos, J. P.; Gonzalez-Elipe, A. R. J. Phys. Chem. B 2002, 106, 10185. https://doi.org/10.1021/jp026082q
- Ai, Z.; Zhang, L.; Lee, S.; Ho, W. J. Phys. Chem. C 2009, 113, 20896. https://doi.org/10.1021/jp9083647
- Yoon, K. H.; Choi, W. J.; Kang, D. H. Thin Solid Films 2000, 372, 250. https://doi.org/10.1016/S0040-6090(00)01058-0
- Lee, S. Y.; Nguyen, M. N.; Sun, Y. M.; White, J. M. Appl. Surf. Sci. 2003, 206, 102. https://doi.org/10.1016/S0169-4332(02)01239-4
- Long, J.; Dong, J.; Wang, X.; Ding, Z.; Zhang, Z.; Wu, L.; Li, Z.; Fu, X. J. Colloid Interface Sci. 2009, 333, 791. https://doi.org/10.1016/j.jcis.2009.02.036
- Zhang, G.; Long, J.; Wang, X.; Dai, W.; Li, Z.; Wu, L.; Fu, X. New J. Chem. 2009, 33, 2044. https://doi.org/10.1039/b906352h
- Galakhov, V. R.; Peteryaev, A. I.; Kurmaev, E. Z.; Anisimov, V. I. Phys. Rev. B 1007, 56, 4584.
- Learmonth, T.; McGuinness, C.; Glans, P. A.; Kennedy, B.; John, J. S.; Guo, J. H.; Greenblatt, M.; Smith, K. E. Phys. Rev. B 2009, 79, 8.
- Scanlon, D. O.; Watson, G. W.; Payne, D. J.; Atkinson, G. R.; Egdell, R. G.; Law, D. S. L. J. Phys. Chem. C 2010, 114, 4636. https://doi.org/10.1021/jp9093172
- Bebensee, F.; Voigts, F.; Maus-Friedrichs, W. Surf. Sci. 2008, 602, 1622. https://doi.org/10.1016/j.susc.2008.02.011
- Yu, Q.; Ma, X.; Lan, Z.; Wang, M.; Yu, C. J. Phys. Chem. C 2009, 113, 6969. https://doi.org/10.1021/jp809564c
- Nakano, Y.; Saeki, S.; Morikawa, T. Appl. Phys. Lett. 2009, 94, 022111. https://doi.org/10.1063/1.3072804
- Langford, J. I.; Wilson, A. J. C. J. Appl. Cryst. 1978, 11, 102. https://doi.org/10.1107/S0021889878012844
- Tsai, D.-C.; Huang, Y.-L.; Lin, S.-R.; Liang, S.-C.; Shieu, F.-S. Appl. Surf. Sci. 2010, 257, 1361. https://doi.org/10.1016/j.apsusc.2010.08.078
Cited by
- Detection of H2S Gas with CuO Nanowire Sensor vol.25, pp.5, 2015, https://doi.org/10.3740/MRSK.2015.25.5.238
- Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air vol.5, pp.4, 2015, https://doi.org/10.1039/C4CY01622J
- Influence of the surface morphology and structure on the gas-sorption properties of SiO2CuO x nanocomposite materials: X-ray spectroscopy investigations vol.57, pp.2, 2015, https://doi.org/10.1134/S1063783415020328
- Correlation between Deposition Parameters and Hydrogen Production in CuO Nanostructured Thin Films vol.32, pp.6, 2016, https://doi.org/10.1021/acs.langmuir.5b03917
- Self-Supported Cu-Based Nanowire Arrays as Noble-Metal-Free Electrocatalysts for Oxygen Evolution vol.9, pp.16, 2016, https://doi.org/10.1002/cssc.201600592
- Unique properties of silver and copper silica-based nanocomposites as antimicrobial agents vol.7, pp.45, 2017, https://doi.org/10.1039/C7RA00720E
- A Facile and Very Effective Method to Enhance the Mechanical Strength and the Cyclability of Si-Based Electrodes for Li-Ion Batteries pp.16146832, 2017, https://doi.org/10.1002/aenm.201701787
- Note: A method for minimizing oxide formation during elevated temperature nanoindentation vol.85, pp.9, 2014, https://doi.org/10.1063/1.4895006
- A Comparative Study on Structural Growth of Copper Oxide Deposited by dc-MS and HiPIMS vol.5, pp.10, 2016, https://doi.org/10.1149/2.0251610jss
- O) subjected to ageing conditions for photovoltaic applications vol.123, pp.8, 2018, https://doi.org/10.1063/1.5017538
- Copper Oxide Nanograss for Efficient and Stable Photoelectrochemical Hydrogen Production by Water Splitting vol.47, pp.3, 2018, https://doi.org/10.1007/s11664-017-5966-y
- thin films for optoelectronic application vol.6, pp.2, 2018, https://doi.org/10.1088/2053-1591/aaf217
- The impact of size effects on the electrochemical behaviour of Cu2O-coated Cu nanopillars for advanced Li-ion microbatteries vol.2, pp.25, 2011, https://doi.org/10.1039/c4ta01361a
- Gas phase hydrodechlorination of CCl4 over Pd-Cu and Pd-Fe bimetallic catalysts supported on an AlF3 matrix vol.41, pp.1, 2011, https://doi.org/10.3184/146867816x14490551502250
- Nonlinear electronic transport and enhanced catalytic behavior caused by native oxides on Cu nanowires vol.663, pp.None, 2017, https://doi.org/10.1016/j.susc.2017.04.011
- Synthesis of Cu–Cr diketo, sublimable, eutectic composite complex, rod crystals from LDH as suitable MOCVD precursor of CuCr2O4 catalysts upon ceramic preforms for N vol.7, pp.None, 2011, https://doi.org/10.1016/j.mtchem.2017.12.001
- CuO-CeO2 nanocomposite catalysts produced by mechanochemical synthesis vol.9, pp.6, 2019, https://doi.org/10.1063/1.5109067
- Modification of MgAl2O4 Electron-Optic Properties by Pulsed Ion Beam vol.82, pp.11, 2011, https://doi.org/10.1134/s1063778819110206
- Structure, optical, and morphological investigations of nano copper oxide prepared using RPLD at different laser wavelength effects vol.42, pp.p5, 2021, https://doi.org/10.1016/j.matpr.2020.12.569
- Annealing enhancement in stability and performance of copper modified boron-doped diamond (Cu-BDD) electrode for electrochemical nitrate reduction vol.114, pp.None, 2011, https://doi.org/10.1016/j.diamond.2021.108310
- Comparative study of CO2 photoreduction using different conformations of CuO photocatalyst: Powder, coating on mesh and thin film vol.50, pp.None, 2011, https://doi.org/10.1016/j.jcou.2021.101588
- Reduction of copper surface oxide using a sub-atmospheric dielectric barrier discharge plasma vol.573, pp.None, 2011, https://doi.org/10.1016/j.apsusc.2021.151568
- Oxygen flow rate effect on copper oxide thin films deposited by radio frequency magnetron sputtering vol.741, pp.None, 2011, https://doi.org/10.1016/j.tsf.2021.139013
- Thermal oxidation impact on the optoelectronic and hydrogen sensing properties of p-type copper oxide thin films vol.147, pp.None, 2011, https://doi.org/10.1016/j.materresbull.2021.111646