DOI QR코드

DOI QR Code

Determination of Atomic Structures and Relative Stabilities of Diadduct Regioisomers of C20X2 (X = H, F, Cl, Br, and OH) by the Hybrid Density-Functional B3LYP Method

  • Lee, Seol (Department of Chemistry, and Nanoscale Sciences and Technology Institute, Wonkwang University) ;
  • Suh, Young-Sun (Department of Chemistry, and Nanoscale Sciences and Technology Institute, Wonkwang University) ;
  • Hwang, Yong-Gyoo (Division of Microelectronics and Display Technology, and Nanoscale Sciences and Technology Institute, Wonkwang University) ;
  • Lee, Kee-Hag (Department of Chemistry, and Nanoscale Sciences and Technology Institute, Wonkwang University)
  • Received : 2011.06.09
  • Accepted : 2011.07.27
  • Published : 2011.09.20

Abstract

We have studied the relative stability and atomic structures of five $C_{20}X_2$ regioisomers obtained as diadducts of a $C_{20}$ cage (X = H, F, Cl, Br, and OH). All the regioisomers are geometric isomers, i.e., they differ in their spatial arrangement. Full-geometry optimizations of the regioisomers have been performed using the hybrid density-functional (B3LYP/6-31G(d, p)) method. Our results suggest that the cis-1 regioisomer (the 1,2-diadduct) is the most stable and that the second most stable is the trans-2 (1,13-diadduct) regioisomer, implying that the long-range interaction between the two adducts and the resonance effect are more pronounced than the diadduct-induced strain in the $C_{20}$ cage. The HOMO and LUMO characteristics of each regioisomer with the same symmetry of structural regioisomers except $C_{20}(OH)_2$ are topologically same. This suggests that by using an entirely different set of characteristic chemical reactions for each regioisomer, we can distinguish between the five regioisomers for each $C_{20}$ diadduct derivative.

Keywords

References

  1. Kroto, H. W. Nature 1987, 329, 529. https://doi.org/10.1038/329529a0
  2. Schmalz, T. Z.; Seitz, W. A.; Klein, D. J.; Hite, D. G. J. Am. Chem. Soc. 1998, 110, 1113.
  3. Prinzbach, H.; Weiler, A.; Landenberer, P.; Wahl, F.; Wörth, J.; Scott, L. T.; Gelmont, M.; Olevano, D.; Issendorff, B. von. Nature 2000, 407, 60. https://doi.org/10.1038/35024037
  4. Hirsch, A. The Chemistry of Fullerenes; New York: Thieme, 1994.
  5. Sabirov, D. S.; Bulgakov, R. G.; Khursan, S. L. Arkivoc 2011, 8, 200-224.
  6. Scheumann, K.; Sackers, E.; Bertau, M.; Leonhardt, J.; Hunkler, D.; Fritz, H.; Worth, J.; Prinzbach, H. J. Chem. Soc., Perkin Trans. 1998, 2, 1195.
  7. Prinzbach, H.; Wahl, F.; Weiler, A.; Landenberer, P.; Wörth, J.; Scott, L. T.; Gelmont, M.; Olevano, D.; Sommer, F.; Issendorff, B. von. Chem. Eur. J. 2006, 12, 6268. https://doi.org/10.1002/chem.200501611
  8. Okamoto, Y. Chem. Phys. Lett. 2003, 368, 224. https://doi.org/10.1016/S0009-2614(02)01797-9
  9. Zhang, C.; Sun, W.; Cao, Z. J. Chem. Phys. 2007, 126, 144306. https://doi.org/10.1063/1.2716642
  10. Lee, J.; Lee, C.; Park, S. S.; Lee, K. H. Bull. Korean Chem. Soc. 2011, 32, 277-280. https://doi.org/10.5012/bkcs.2011.32.1.277
  11. Moran, D.; Simmonett, A. C.; Leach, F. E., III.; Allen, W. D.; Schleyer, P. v. R.; Schaefer, H. F., III. J. Am. Chem. Soc. 2006, 128, 9342. https://doi.org/10.1021/ja0630285
  12. An, Y.-P.; Yang, C.-L.; Wang, M.-S.; Ma, X.-G.; Wang, D.-H. J. Phys. Chem. C 2009, 113, 15756. https://doi.org/10.1021/jp904202c
  13. Irikura, K. K. J. Phys. Chem. A 2008, 112, 983. https://doi.org/10.1021/jp710372p
  14. Zhang, C.-Y.; Wu, H.-S.; Jiao, H. J. Mol. Model 2007, 13, 499. https://doi.org/10.1007/s00894-007-0169-8
  15. Beck, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  16. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. A 1988, 37, 785.
  17. Stephen, P. J.; Devlin, F. J.; Chablowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. https://doi.org/10.1021/j100096a001
  18. Herteing, R. H.; Koch, W. Chem. Phys. Lett. 1997, 268, 345. https://doi.org/10.1016/S0009-2614(97)00207-8
  19. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. https://doi.org/10.1063/1.1677527
  20. Frisch, M. J. et al. A Gaussian 03 B.04, Gaussian, Inc., Pittsburgh, PA, 2003.
  21. Clark, T. R.; Koch, R. The Chemist's Electronic Book of Orbitals; Springer-Verlag: Berlin, 1999.
  22. Bond, A. J. Phys. Chem. 1964, 68, 441. https://doi.org/10.1021/j100785a001

Cited by

  1. Regioisomers (X = F, Cl, Br, or OH) vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.641
  2. Regioisomers: Hybrid DFT B3LYP Study vol.34, pp.8, 2013, https://doi.org/10.5012/bkcs.2013.34.8.2403
  3. ) number of different addends vol.25, pp.2, 2017, https://doi.org/10.1080/1536383X.2016.1255203
  4. First-principles calculations of the electronic structure of C20, electric field, and monomer interaction effects vol.91, pp.1, 2011, https://doi.org/10.1139/cjp-2012-0232