DOI QR코드

DOI QR Code

Facile Synthesis of the Uryl Pendant Binaphthol Aldehyde and Its Selective Fluorescent Recognition of Tryptophan

  • Tang, Lijun (College of Chemistry and Chemical Engineering, Liaoning Key Laboratory for the Synthesis and Application of Functional Compounds, Bohai University) ;
  • Wei, Gongfan (College of Chemistry and Chemical Engineering, Liaoning Key Laboratory for the Synthesis and Application of Functional Compounds, Bohai University) ;
  • Nandhakumar, Raju (Department of Chemistry, Karunya University) ;
  • Guo, Zhilong (College of Chemistry and Chemical Engineering, Liaoning Key Laboratory for the Synthesis and Application of Functional Compounds, Bohai University)
  • Received : 2011.01.03
  • Accepted : 2011.07.27
  • Published : 2011.09.20

Abstract

An easy and convenient synthetic route to (S)-2-hydroxy-2'-(3-phenyluryl-benzyl)-1,1'-binaphthyl-3-carboxaldehyde (1), capable of recognizing tryptophan by fluorescence has been developed. The binol carboxaldehyde 1 exhibited a high selectivity to L-tryptophan over other examined L-${\alpha}$-amino acids such as alanine, phenylalanine, glutamine, arginine, lysine, serine, threonine, aspartat, valine, histidine and cysteine, with a fluorescence "turn-on" signal. In addition, 1 displayed chiral discrimination with good enantioselectivity toward L-tryptophan over D-tryptophan through different fluorescence enhancement factors.

Keywords

References

  1. Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives; Wiley-VCH: Weinheim, Germany, 1995.
  2. Zhang, X. X.; Bradshaw, J. S.; Izatt, R. M. Chem. Rev. 1997, 97, 3313- 3362. https://doi.org/10.1021/cr960144p
  3. Finn, M. G. Chirality 2002, 14, 534-540. https://doi.org/10.1002/chir.10101
  4. Hanessian, S. Pure. Appl. Chem. 1993, 65, 1189-1204. https://doi.org/10.1351/pac199365061189
  5. Blaser, H. U. Chem. Rev. 1992, 92, 935-952. https://doi.org/10.1021/cr00013a009
  6. Ackay, G. M.; Forrest, C. M.; Stoy, N.; Christofides, J.; Egerton, M.; Stone, T. W.; Darlington, L. G. Eur. J. Neurol. 2006, 13, 30-42.
  7. Nussbaum, F. V.; Stephacidin, B. Angew. Chem. Int. Ed. 2003, 42, 3068-3071. https://doi.org/10.1002/anie.200301646
  8. Diem, S.; Bergmann, J.; Herderich, M. J. Agric. Food Chem. 2000, 48, 4913-4917. https://doi.org/10.1021/jf0003146
  9. MolnGr-Perl, I. J. Chromatogr. A. 1997, 763, 1-10. https://doi.org/10.1016/S0021-9673(96)00911-9
  10. Friedman, M.; Finley, J. W. J. Agric. Food Chem. 1971, 19, 626- 631. https://doi.org/10.1021/jf60176a010
  11. Friedman, M. J. Agric. Food Chem. 2004, 52, 385-406. https://doi.org/10.1021/jf030490p
  12. Ryu, D.; Park, E.; Kim, D.-S.; Yan, S.; Lee, J. Y.; Chang, B.-Y.; Ahn, K. H. J. Am. Chem. Soc. 2008, 130, 2394-2395. https://doi.org/10.1021/ja078308e
  13. Kim, H.; So, S. M.; Yen, C. P.-H.; Vinhato, E.; Lough, A. J.; Hong, J.-I.; Kim, H.-J.; Chin, J. Angew. Chem. Int. Ed. 2008, 47, 8657-8660. https://doi.org/10.1002/anie.200803116
  14. Kim, H.-J.; Asif, R.; Chung, D. S.; Hong, J.-I. Tetrahedron Lett. 2003, 44, 4335-4338. https://doi.org/10.1016/S0040-4039(03)00937-7
  15. Chin, J.; Kim, D. C.; Kim, H.-J.; Panosyan, F. B.; Kim, K. M. Org. Lett. 2004, 6, 2591-2593. https://doi.org/10.1021/ol049084x
  16. Hortala, M. A.; Fabbrizzi, L.; Marcotte, N.; Stomeo, F.; Taglietti, A. J. Am. Chem. Soc. 2003, 125, 20-21. https://doi.org/10.1021/ja027110l
  17. Badis, M.; Tomaszkiewicz, I.; Joly, J.-P.; Rogalska, E. Langmuir 2004, 20, 6259-6267. https://doi.org/10.1021/la049596k
  18. Escuder, B.; Rowan, A. E.; Feiters, M. C.; Nolte, R. J. M. Tetrahedron 2004, 60, 291-300. https://doi.org/10.1016/j.tet.2003.11.019
  19. Pagliari, S.; Corradini, R.; Galaverna, G.; Sforza, S.; Dossena, A.; Montalti, M.; Prodi, L.; Zaccheroni, N.; Marchelli, R. Chem. Eur. J. 2004, 10, 2749-2758. https://doi.org/10.1002/chem.200305448
  20. Michinobu, T.; Shinoda, S.; Nakanishi, T.; Hill, J. P.; Fujii, K.; Player, T. N.; Tsukube, H.; Ariga, K. J. Am. Chem. Soc. 2006, 128, 14478-14479. https://doi.org/10.1021/ja066429t
  21. Schmuck, C.; Bickert, V. Org. Lett. 2003, 5, 4579-4581. https://doi.org/10.1021/ol0356340
  22. Soloshonok, V. A.; Ellis, T. K.; Ueki, H.; Ono, T. J. Am. Chem. Soc. 2009, 131, 7208- 7209. https://doi.org/10.1021/ja9026055
  23. Schmuck, C.; Graupner, S. Tetrahedron Lett. 2005, 46, 1295-1298. https://doi.org/10.1016/j.tetlet.2004.12.120
  24. Imai, H.; Munakata, H.; Uemori, Y.; Sakura, N. Inorg. Chem. 2004, 43, 1211-1213. https://doi.org/10.1021/ic0302837
  25. Folmer-Andersen, J. F.; Lynch, V. M.; Anslyn, E. V. J. Am. Chem. Soc. 2005, 127, 7986- 7987. https://doi.org/10.1021/ja052029e
  26. Angelini, N.; Micali, N.; Mineo, P.; Scamporrino, E.; Villari, V.; Vitalini, D. J. Phys. Chem. B 2005, 109, 18645-18651. https://doi.org/10.1021/jp052408u
  27. Sirikulkajorn, A.; Tuntulani, T.; Ruangpornvisuti, V.; Tomapatanaget, B.; Davis, A. P. Tetrahedron 2010, 66, 7423-7428. https://doi.org/10.1016/j.tet.2010.06.069
  28. Prasad, B. B.; Madhuri, R.; Tiwari, M. P.; Sharma, P. S. Talanta 2010, 81, 187-196. https://doi.org/10.1016/j.talanta.2009.11.055
  29. Kong, Y.; Zhao, W.; Yao, S.; Xu, J.; Wang, W.; Chen, Z. J. Appl. Polym. Sci. 2010, 115, 1952-1957. https://doi.org/10.1002/app.31165
  30. Liu, F.; Liu, X.; Ng, S.-C.; Chan, H. S.-O. Sens. Actuators, B 2006, 113, 234-240. https://doi.org/10.1016/j.snb.2005.02.058
  31. Li, H.; Li, F.; Han, C.; Cui, Z.; Xie, G.; Zhang, A. Sens. Actuators, B 2010, 145, 194-199. https://doi.org/10.1016/j.snb.2009.11.062
  32. Chen, Z. D.; Wei, J. X.; Wang, W. C.; Kong, Y. Chin. Chem. Lett. 2010, 21, 353-356. https://doi.org/10.1016/j.cclet.2009.11.044
  33. Sambasivan, S.; Kim, D.-S.; Ahn, K. H. Chem. Commun. 2010, 46, 541-543. https://doi.org/10.1039/b919957h
  34. Park, H.; Kim, K. M.; Lee, A.; Ham, S.; Nam, W.; Chin, J. J. Am. Chem. Soc. 2007, 129, 1518-1519. https://doi.org/10.1021/ja067724g
  35. Reeve, T. B.; Cros, J.; Gennari, C.; Piarulli, U.; Vries, J. G. Angew. Chem. Int. Ed. 2006, 45, 2449-2453. https://doi.org/10.1002/anie.200504116
  36. Chin, J.; Lee, S.; Lee, K. J.; Park, S.; Kim, D. H. Nature 1999, 401, 254-257. https://doi.org/10.1038/45751
  37. Kim, K. M.; Park, H.; Kim, H.-J.; Chin, J.; Nam, W. Org. Lett. 2005, 7, 3525-3527. https://doi.org/10.1021/ol051267b
  38. Park, H.; Nandhakumar, R.; Hong, J.; Ham, S.; Chin, J.; Kim, K. M. Chem. Eur. J. 2008, 14, 9935-9942. https://doi.org/10.1002/chem.200801036
  39. Hoshiya, N.; Watanabe, N.; Ijuin, H. K.; Matsumoto, M. Tetrahedron 2006, 62, 12424-12437. https://doi.org/10.1016/j.tet.2006.09.108
  40. Wang, B. D.; Hai, J.; Liu, Z. C.; Wang, Q.; Yang, Z. Y.; Sun, S. H. Angew. Chem. Int. Ed. 2010, 49, 4576-4579. https://doi.org/10.1002/anie.201001373

Cited by

  1. Recent Advances in Development of Chiral Fluorescent and Colorimetric Sensors vol.114, pp.9, 2014, https://doi.org/10.1021/cr400568b
  2. ) promoted dramatic enhancement in the enantioselective fluorescent recognition of functional chiral amines by a chiral aldehyde vol.5, pp.9, 2014, https://doi.org/10.1039/C4SC00818A
  3. Efficient Synthesis of Chiral Binaphthol Aldehyde with Phenyl Ether Linkage for Enantioselective Extraction of Amino Acids vol.36, pp.7, 2015, https://doi.org/10.1002/bkcs.10354
  4. Greatly Enhanced Fluorescence by Increasing the Structural Rigidity of an Imine: Enantioselective Recognition of 1,2-Cyclohexanediamine by a Chiral Aldehyde vol.22, pp.17, 2016, https://doi.org/10.1002/chem.201504686
  5. A Highly Fluorinated Chiral Aldehyde for Enantioselective Fluorescent Recognition in a Biphasic System vol.23, pp.45, 2017, https://doi.org/10.1002/chem.201702354
  6. Discrimination of the Chirality of α‐Amino Acids in ZnII Complexes of DPA‐Appended Binaphthyl Imine vol.2018, pp.35, 2011, https://doi.org/10.1002/ejoc.201800321
  7. Free Amino Acid Recognition: A Bisbinaphthyl-Based Fluorescent Probe with High Enantioselectivity vol.141, pp.1, 2011, https://doi.org/10.1021/jacs.8b07803
  8. Chiral cryptands possessing fragments of (S)-2,2′-diamino-1,1′-binaphtalene and diaza-crown ethers vol.68, pp.4, 2011, https://doi.org/10.1007/s11172-019-2495-2
  9. Biphasic Enantioselective Fluorescent Recognition of Amino Acids by a Fluorophilic Probe vol.25, pp.33, 2019, https://doi.org/10.1002/chem.201900880
  10. Simultaneous Determination of Concentration and Enantiomeric Composition of Amino Acids in Aqueous Solution by Using a Tetrabromobinaphthyl Dialdehyde Probe vol.25, pp.42, 2011, https://doi.org/10.1002/chem.201901374
  11. Excitation of One Fluorescent Probe at Two Different Wavelengths to Determine the Concentration and Enantiomeric Composition of Amino Acids vol.21, pp.22, 2019, https://doi.org/10.1021/acs.orglett.9b03437
  12. Opposite Enantioselectivity of Mg(II) Versus Zn(II) in the Fluorescent Recognition of Amino Acids vol.85, pp.7, 2020, https://doi.org/10.1021/acs.joc.0c00064
  13. A near-IR Fluorescent Probe for Enantioselective Recognition of Amino Acids in Aqueous Solution vol.85, pp.11, 2011, https://doi.org/10.1021/acs.joc.0c00725
  14. Fluorescent recognition of L- and D-tryptophan in water by micelle probes vol.4, pp.8, 2020, https://doi.org/10.1039/d0qm00260g
  15. Pd(0)-catalyzed amination in the synthesis of chiral derivatives of BINAM and their evaluation as fluorescent enantioselective detectors vol.92, pp.8, 2011, https://doi.org/10.1515/pac-2020-0205
  16. Enantioselective Fluorescent Recognition of Free Amino Acids: Challenges and Opportunities vol.132, pp.49, 2011, https://doi.org/10.1002/ange.202003969
  17. Enantioselective Fluorescent Recognition of Free Amino Acids: Challenges and Opportunities vol.59, pp.49, 2011, https://doi.org/10.1002/anie.202003969