참고문헌
- Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765.
- Lee, H. W.; Guha, A. K.; Lee, I. Int. J. Chem. Kinet. 2002, 34, 632. https://doi.org/10.1002/kin.10081
- Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493. https://doi.org/10.1021/jo0700934
- Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 936. https://doi.org/10.5012/bkcs.2007.28.6.936
- Dey, N. K.; Han, I. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 2003. https://doi.org/10.5012/bkcs.2007.28.11.2003
- Hoque, M. E. U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2007, 5, 3944. https://doi.org/10.1039/b713167d
- Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2008, 21, 544. https://doi.org/10.1002/poc.1314
- Lumbiny, B. J.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 2065. https://doi.org/10.5012/bkcs.2008.29.10.2065
- Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2009, 22, 425. https://doi.org/10.1002/poc.1478
- Dey, N. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2009, 30, 975. https://doi.org/10.5012/bkcs.2009.30.4.975
- Hoque, M. E. U.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2009, 7, 2919. https://doi.org/10.1039/b903148k
- Dey, N. K.; Lee, H. W. Bull. Korean Chem. Soc. 2010, 31, 1403. https://doi.org/10.5012/bkcs.2010.31.5.1403
- Dey, N. K.; Kim, C. K.; Lee, H. W. Org. Biomol. Chem. 2011, 9, 717. https://doi.org/10.1039/c0ob00517g
- Barai, H. R.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1939. https://doi.org/10.5012/bkcs.2011.32.6.1939
- Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1997. https://doi.org/10.5012/bkcs.2011.32.6.1997
- Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12. https://doi.org/10.1021/jo990671j
- Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. J. Org. Chem. 2002, 67, 2215. https://doi.org/10.1021/jo0162742
- Adhikary, K. K.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 1135. https://doi.org/10.5012/bkcs.2003.24.8.1135
- Hoque, M. E. U.; Dey, N. K.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 1797. https://doi.org/10.5012/bkcs.2007.28.10.1797
- Adhikary, K. K.; Lumbiny, B. J.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 851. https://doi.org/10.5012/bkcs.2008.29.4.851
- Lumbiny, B. J.; Adhikary, K. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 1769. https://doi.org/10.5012/bkcs.2008.29.9.1769
- Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. 2010, 23, 1022. https://doi.org/10.1002/poc.1709
- Dey, N. K.; Adhikary, K. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2010, 31, 3856. https://doi.org/10.5012/bkcs.2010.31.12.3856
- Dey, N. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 709. https://doi.org/10.5012/bkcs.2011.32.2.709
- Hoque, M. E. U.; Dey, S.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1138. https://doi.org/10.5012/bkcs.2011.32.4.1138
- Guha, A. K.; Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1375. https://doi.org/10.5012/bkcs.2011.32.4.1375
- Guha, A. K.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. 2011, 24, 474. https://doi.org/10.1002/poc.1788
- Adhikary, K. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1945. https://doi.org/10.5012/bkcs.2011.32.6.1945
- Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 2109. https://doi.org/10.5012/bkcs.2011.32.6.2109
- Adhikary, K. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1625. https://doi.org/10.5012/bkcs.2011.32.5.1625
- Lee, I.; Kim, C. K.; Li, H. G.; Sohn, C. K.; Kim, C. K.; Lee, H. W.; Lee, B. S. J. Am. Chem. Soc. 2000, 122, 11162. https://doi.org/10.1021/ja001814i
- Han, I. S.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 889. https://doi.org/10.5012/bkcs.2011.32.3.889
- Westheimer, F. H. Acc. Chem. Res. 1968, 1, 70. https://doi.org/10.1021/ar50003a002
- Gorenstein, D. G. Chem. Rev. 1987, 87, 1047. https://doi.org/10.1021/cr00081a009
- Yang, J. C.; Gorenstein, D. G. Tetrahedron 1987, 43, 479. https://doi.org/10.1016/S0040-4020(01)89980-4
- Ritchie, C. D. In Solute-Solvent Interactions, Coetzee, J. F., Ritchie, C. D. Eds., Marcel Dekker: New York, 1969; Chapter 4.
- Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 54.
- Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1996, 2099.
- Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780. https://doi.org/10.1021/jo970413r
- Perrin, C. I.; Engler, R. E. J. Phys. Chem. 1991, 95, 8431. https://doi.org/10.1021/j100175a004
- Perrin, C. I.; Ohta, B. K.; Kuperman, J. J. Am. Chem. Soc. 2003, 125, 15008. https://doi.org/10.1021/ja038343v
- Perrin, C. I.; Ohta, B. K.; Kuperman, J.; Liberman, J.; Erdelyi, M. J. Am. Chem. Soc. 2005, 127, 9641. https://doi.org/10.1021/ja0511927
- Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165. https://doi.org/10.1021/cr00002a004
- Streitwieser, A., Jr.; Heathcock, C. H.; Kosower, E. M. Introduction to Organic Chemistry, 4th ed.; Macmillan: New York, 1992; p 735.
- Crumpler, T. B.; Yoh, J. H. Chemical Computations and Errors; John Wiley: New York, 1940; p 178.
- Hehre, W. J.; Random, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; Chapter 4.
- Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
- Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
- Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
- Lee, I.; Koh, H. J.; Lee, B. S.; Lee, H. W. J. Chem. Soc., Chem. Commun. 1990, 335.
- Lee, I. Chem. Soc. Rev. 1995, 24, 223. https://doi.org/10.1039/cs9952400223
- Marlier, J. F. Acc. Chem. Res. 2001, 34, 283. https://doi.org/10.1021/ar000054d
- Westaway, K. C. Adv. Phys. Org. Chem. 2006, 41, 217.
- Villano, S. M.; Kato, S.; Bierbaum, V. M. J. Am. Chem. Soc. 2006, 128, 736. https://doi.org/10.1021/ja057491d
- Gronert, S.; Fajin, A. E.; Wong, L. J. Am. Chem. Soc. 2007, 129, 5330. https://doi.org/10.1021/ja070093l
- Poirier, R. A.; Youliang, W.; Westaway, K. C. J. Am. Chem. Soc. 1994, 116, 2526. https://doi.org/10.1021/ja00085a037
- Yamata, H.; Ando, T.; Nagase, S.; Hanamusa, M.; Morokuma, K. J. Org. Chem. 1984, 49, 631. https://doi.org/10.1021/jo00178a010
- Xhao, X. G.; Tucker, S. C.; Truhlar, D. G. J. Am. Chem. Soc. 1991, 113, 826. https://doi.org/10.1021/ja00003a015
피인용 문헌
- Kinetics and Mechanism of the Pyridinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.270
- Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.663
- Kinetics and Mechanism of the Pyridinolysis of (2R,4R,5S)-(+)-2-Chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-Sulfide in Acetonitrile vol.33, pp.3, 2012, https://doi.org/10.5012/bkcs.2012.33.3.1047
- Concerted Pathway to the Mechanism of the Anilinolysis of Bis(N,N-diethylamino)phosphinic Chloride in Acetonitrile vol.70, pp.1, 2017, https://doi.org/10.1071/CH16202
- Kinetics and Mechanism of the Pyridinolysis of Bis(2,6-dimethylphenyl) Chlorophosphate in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4179
- Kinetics and Mechanism of the Anilinolysis of Ethylene Phosphorochloridate in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4185
- Kinetics and Mechanism of the Benzylaminolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4304
- Kinetics and Mechanism of the Pyridinolysis of Ethylene Phosphorochloridate in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4347
- Kinetics and Mechanism of the Anilinolysis of Bis(N,N-dimethylamino) Phosphinic Chloride in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4361
- Kinetics and Mechanism of the Pyridinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4387
- Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorothiophosphate in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4403
- Kinetics and Mechanism of the Anilinolysis of (2R,4R,5S)-(+)-2-Chloro-3,4-dimethyl -5-phenyl-1,3,2-oxazaphospholidine 2-Sulfide in Acetonitrile vol.33, pp.3, 2011, https://doi.org/10.5012/bkcs.2012.33.3.1037
- Pyridinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.3, 2011, https://doi.org/10.5012/bkcs.2012.33.3.1055
- Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorothiophosphate in Acetonitrile vol.33, pp.3, 2011, https://doi.org/10.5012/bkcs.2012.33.3.843
- Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorophosphate in Acetonitrile vol.33, pp.6, 2012, https://doi.org/10.5012/bkcs.2012.33.6.1879
- Nucleophilic substitution reactions promoted by oligoethylene glycols: a mechanistic study of ion‐pair SN2 processes facilitated by Lewis base vol.26, pp.1, 2011, https://doi.org/10.1002/poc.3010