DOI QR코드

DOI QR Code

Functional and Structural Characterization of Drosocin and its Derivatives Linked O-GalNAc at Thr11 Residue

  • Ahn, Mi-Ja (Division of Magnetic Resonance, Korea Basic Science Institute) ;
  • Sohn, Ho-Ik (Department of Chemistry and Biochemistry, College of Natural Science, University of Texas at Austin) ;
  • Nan, Yong Hai (Department of Bio-Materials, Graduate School and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University) ;
  • Murugan, Ravichandran N. (Division of Magnetic Resonance, Korea Basic Science Institute) ;
  • Cheong, Chae-Joon (Division of Magnetic Resonance, Korea Basic Science Institute) ;
  • Ryu, Eun-Kyoung (Division of Magnetic Resonance, Korea Basic Science Institute) ;
  • Kim, Eun-Hee (Division of Magnetic Resonance, Korea Basic Science Institute) ;
  • Kang, Shin-Won (Department of Chemistry, Pusan National University) ;
  • Kim, Eun-Joo (Korea Institute of Toxicology) ;
  • Shin, Song-Yub (Department of Bio-Materials, Graduate School and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University) ;
  • Bang, Jeong-Kyu (Division of Magnetic Resonance, Korea Basic Science Institute)
  • Received : 2011.06.27
  • Accepted : 2011.07.21
  • Published : 2011.09.20

Abstract

Antimicrobial peptides have recently gained the much attention because of their ability to make defense system from attacking bacterial infections. Drosocin has been considered as very attractive antibiotic agents because of low toxicity against human erythrocytes and active at the low concentration. We have studied the structureactivity relationship of a glycopeptide drosocin focused on the N-acetyl-D-galactoside at $Thr^{11}$ residue. Based on the radial diffusion assay, we found that the acetylation of carbohydrate moiety increased the antimicrobial activity and the $Pro^{10}$, present in the middle of drosocin plays an important role in the antimicrobial activity. Our results provide a good lead compound for further studies on the design of drosocin-based analogues targeting glyco linked Thr site.

Keywords

References

  1. Otvos, L. Jr. J. Pep. Sci. 2000, 6, 497-511. https://doi.org/10.1002/1099-1387(200010)6:10<497::AID-PSC277>3.0.CO;2-W
  2. Knappe, D. K.; Piantavigna, S.; Mechler, A.; Binas, A.; Nolte, O.; Martin, L. L.; Hoffmann, R. J. Med. Chem. 2010, 53, 5240-5247. https://doi.org/10.1021/jm100378b
  3. Bang, J.- K.; Murugan, R. N.; Kwak, O. K.; Jeon, Y.; Chung, J.; Lee, K.; Park, J.; Kim, S.; Park, J.-S.; Kang, S. Bull. Kor. Chem. Soc. 2010, 31, 209-212. https://doi.org/10.5012/bkcs.2010.31.01.209
  4. Hoffmann, J. A.; Hetru, C.; Reichhart, J.-M. FEBS Lett. 1993, 325, 63-66. https://doi.org/10.1016/0014-5793(93)81414-U
  5. Hultmark, D. Trends Genet. 1993, 9, 178-183. https://doi.org/10.1016/0168-9525(93)90165-E
  6. Kragol, G.; Lovas, S.; Varadi, G.; Condie, B. A.; Hoffmann, R. Biochemistry 2001, 40, 3016-3026. https://doi.org/10.1021/bi002656a
  7. Bulet, P.; Urge, L.; Ohresser, S.; Hetru, C.; Otvos, L., Jr. Eur. J. Biochem. 1996, 238, 64-69. https://doi.org/10.1111/j.1432-1033.1996.0064q.x
  8. Hara, S.; Yamakawa, M. Biochem. J. 1995, 310, 651-656.
  9. Bulet, P., Dimarcq, J.-L.; Hetru, C.; Lagueux, M.; Charlet, M.; Hegy, G.; Van Dorsselaer, A.; Hoffmann, J. A. J. Biochem. Chem. 1993, 268, 14893-14897.
  10. Visser, P. C.; Hooft, P. A.; Vries, A.-M.; Jong, A.; Marel, G. A.; Overkleeft, H. S.; Noort, D. Bioorganic & Med. Chem. Lett. 2005, 15, 2902-2905. https://doi.org/10.1016/j.bmcl.2005.03.074
  11. Gobbo, M.; Biondi, L.; Filira, F.; Renato, G.; Benincasa, M.; Scolaro, B.; Rocchi, R. J. Med. Chem. 2002, 45, 4494-4504. https://doi.org/10.1021/jm020861d
  12. McManus, A.; Otvos, L., Jr.; Hoffmann, R.; Craik, D. J. Biochemistry 1999, 38, 705-714. https://doi.org/10.1021/bi981956d
  13. Kaur, K. J.; Pandey, S.; Salunke, D. M. Protein Science 2007, 16, 309-315.
  14. Lehrer, R. I.; Rosenman, M.; Harwig, S. S.; Jackson, R.; Eisenhauer, P. J. Immunol. Methods 1991, 137, 167-173. https://doi.org/10.1016/0022-1759(91)90021-7
  15. Heggemann, C.; Budke, C.; Schomburg, B.; Majer, Z.; Wissbrock, M.; Koop, T.; Sewald, N. Amino Acids 2010, 38, 213-222. https://doi.org/10.1007/s00726-008-0229-0
  16. Winans, K.; King, D.; Rao, V.; Bertozzi, C. Biochemistry 1999, 38, 11700-11710. https://doi.org/10.1021/bi991247f
  17. Perczel, A.; Hoolosi, M.; Sandor, P.; Fasmann, G. D. Int. J. Pept. Protein Res. 1993, 41, 223-236.

Cited by

  1. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012 vol.36, pp.3, 2015, https://doi.org/10.1002/mas.21471
  2. Insect Antimicrobial Peptides, a Mini Review vol.10, pp.11, 2018, https://doi.org/10.3390/toxins10110461
  3. Studies on the Effect of Number of Sugar Moiety in the Antifreeze Activity of Homodimeric AFGPs vol.33, pp.7, 2011, https://doi.org/10.5012/bkcs.2012.33.7.2411
  4. Synthesis of Cyclic Antifreeze Glycopeptide and Glycopeptoids and Their Ice Recrystallization Inhibition Activity vol.33, pp.11, 2011, https://doi.org/10.5012/bkcs.2012.33.11.3565
  5. Peptoid-based Positional Scanning Derivatives: Revealing the Optimum Residue Required for Ice Recrystallization Inhibition Activity for Every Position in the AFGPs vol.33, pp.12, 2011, https://doi.org/10.5012/bkcs.2012.33.12.3931