DOI QR코드

DOI QR Code

Fabrication of Hollow Metal Microcapsules with Mesoporous Shell Structure: Application as Efficient Catalysts Recyclable by Simple Magnetic Separation

  • Received : 2011.06.13
  • Accepted : 2011.07.19
  • Published : 2011.09.20

Abstract

Monodispersed porous NiO and $Co_3O_4$ microcapsules with a hollow core were synthesized using SBA-16 silica sol and PS as a hard template. The porous hollow microcapsules were characterized by XRD, TEM and $N_2$ adsorption/desorption analysis. After $H_2$ reduction of metal oxide microspheres, they were conducted as an active catalyst in the reduction of chiral butylronitrile and cyanobenzene. The mesoporous metals having a hollow structure showed a higher activity than a nonporous metal powder and an impregnated metal on the carbon support.

Keywords

References

  1. Caruso, F. Chem. Eur. J. 2000, 6, 413. https://doi.org/10.1002/(SICI)1521-3765(20000204)6:3<413::AID-CHEM413>3.0.CO;2-9
  2. Kim, S. W.; Kim, M.; Lee, W.; Hyeon, Y. T. J. Am. Chem. Soc. 2002, 124, 7642. https://doi.org/10.1021/ja026032z
  3. Jiang, P.; Berton, J. F.; Colvin, V. L. Science 2001, 291, 453. https://doi.org/10.1126/science.291.5503.453
  4. Li, Y. S.; Shi, J. L.; Hua, Z. L.; Chen, H. R.; Ruan, M. L.; Yan, D. S. Nano Lett. 2003, 3, 609. https://doi.org/10.1021/nl034134x
  5. Xu, X.; Asher, S. A. J. Am. Chem. Soc. 2004, 126, 7940. https://doi.org/10.1021/ja049453k
  6. Wang, Y.; Cai, L.; Xia, Y. Adv. Mater. 2005, 17, 473. https://doi.org/10.1002/adma.200401416
  7. Zhu, Y.; Shi, J.; Chen, H.; Shen, W.; Dong, X. Micro. Mesoporous Mater. 2005, 84, 218. https://doi.org/10.1016/j.micromeso.2005.05.001
  8. Caruso, F.; Schuler, C.; Kurth, D. G. Chem. Mater. 1999, 11, 3394. https://doi.org/10.1021/cm9911058
  9. Caruso, F.; Susha, A. S.; Giersig, Mohwald, M. H. Adv. Mater. 1999, 11, 950. https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<950::AID-ADMA950>3.0.CO;2-T
  10. Caruso, F.; Shi, X.; Caruso, R. A.; Susha, A. Adv. Mater. 2000, 12, 950. https://doi.org/10.1002/1521-4095(200006)12:13<950::AID-ADMA950>3.0.CO;2-V
  11. Lu, Y.; Fan, H.; Stump, A.; Ward, T.; Rieker, T.; Rinker, C. J. Nature 1999, 398, 223. https://doi.org/10.1038/18410
  12. Gittins, D.; Caruso, I. F. Adv. Mater. 2001, 13, 740. https://doi.org/10.1002/1521-4095(200105)13:10<740::AID-ADMA740>3.0.CO;2-6
  13. Huang, H.; Emsen, E. E.; Kowaleski, T.; Wooley, K. L. J. Am. Chem. Soc. 1999, 121, 3805. https://doi.org/10.1021/ja983610w
  14. Wang, X. D.; Yang, W. I.; Tang, Y.; Wang, Y. J.; Fu, S. K.; Gao, Z. Chem. Commun. 2000, 2161.
  15. Zhong, Z.; Yin, Y.; Gates, B.; Xia, Y. Adv. Mater. 2000, 12, 206. https://doi.org/10.1002/(SICI)1521-4095(200002)12:3<206::AID-ADMA206>3.0.CO;2-5
  16. Putlitz, B. Z.; Landfester, K.; Fisher, H.; Antonietti, M. Adv. Mater. 2001, 13, 500. https://doi.org/10.1002/1521-4095(200104)13:7<500::AID-ADMA500>3.0.CO;2-3
  17. Yoon, S. B.; Shon, K.; Kim, J. Y.; Shin, C. H.; Yu, J. S.; Hyeon, T. Adv. Mater. 2002, 14, 19. https://doi.org/10.1002/1521-4095(20020104)14:1<19::AID-ADMA19>3.0.CO;2-X
  18. Guo, X.-F.; Kim, Y.-S.; Kim, G. J. J. Phys. Chem. C 2009, 113, 8313. https://doi.org/10.1021/jp8108122
  19. Deng, Z.; Chen, M.; Zhou, S.; You, B.; Wu, L. Langmuir 2006, 22, 6403. https://doi.org/10.1021/la060944n
  20. Schmid, A.; Fujii, S.; Armes, S. P. Langmuir 2006, 22, 4923. https://doi.org/10.1021/la060308p
  21. Imhof, A. Langmuir 2001, 17, 3579. https://doi.org/10.1021/la001604j
  22. Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Angew. Chem. Int. Edn. 1999, 38, 56. https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-E
  23. Schth, F.; Schmidt, W. Adv. Mater. 2002, 14, 629. https://doi.org/10.1002/1521-4095(20020503)14:9<629::AID-ADMA629>3.0.CO;2-B
  24. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710. https://doi.org/10.1038/359710a0
  25. Asefa, T.; MacLachan, M. J.; Coombs, N.; Ozin, G. A. Nature 1999, 402, 867.
  26. Garcia, C.; Zhang, Y. M.; DiSalvo, F.; Wiesner, U. Angew. Chem. Int. Edn. 2003, 42, 1526. https://doi.org/10.1002/anie.200250618
  27. Mokaya, R. Angew. Chem. Int. Edn. 1999, 38, 2930. https://doi.org/10.1002/(SICI)1521-3773(19991004)38:19<2930::AID-ANIE2930>3.0.CO;2-8
  28. Roucoux, A.; Schulz, J.; Patin, H. Chem. Rev. 2002, 102, 3757. https://doi.org/10.1021/cr010350j
  29. Kim, G. J.; Guo, X.-F. J. Phy. Chem. Sol. 2010, 71, 612. https://doi.org/10.1016/j.jpcs.2009.12.049
  30. Glaspell, G. P.; Jagodzinski, P. W.; Manivannan, A. J. Phys. Chem. B 2004, 108, 9604. https://doi.org/10.1021/jp0370831
  31. Matveev, V. V.; Baranov, D. A.; Yurkov, G. Y.; Akatiev, N. G.; Dotsenko, I. P.; Gubin, S. P. Chemical Physics Letter 2006, 422, 402. https://doi.org/10.1016/j.cplett.2006.02.099
  32. Kumar, S.; Chakarvarti, S. K. J. Mat. Sci. 2004, 39, 3249. https://doi.org/10.1023/B:JMSC.0000025871.02799.f3
  33. Moises, C.; Pellicer, E.; Rossinyol, E.; Estrader, M.; Lopez- Ortege, A.; Nogues, J.; Castell, O.; Surinach, S.; Baro, M. D. J. Mat. Chem. 2010, 20, 7021. https://doi.org/10.1039/c0jm00406e
  34. Shi, Y.; Wan, Y.; Zhang, R.; Zhao, D. Adv. Funct. Mater. 2008, 18, 2436. https://doi.org/10.1002/adfm.200800488
  35. Yue, W.; Zhou, W. J. Mat. Chem. 2007, 17, 4947. https://doi.org/10.1039/b709076e
  36. Syukri; Ban, T.; Ohya, Y.; Takahashi, Y. Materials Chemistry and Physics 2003, 78, 645. https://doi.org/10.1016/S0254-0584(02)00185-2

Cited by

  1. Nanospheres by Using a Sandwich-Structured Precursor with Three Roles vol.78, pp.8, 2013, https://doi.org/10.1002/cplu.201300058