DOI QR코드

DOI QR Code

Determination of Proper Application Timing and Frequency for Management of Tomato Leaf Mold Disease by Commercially Available Microbial Preparations

미생물제제 이용 토마토 잎곰팡이병 방제시기 및 살포회수 결정

  • Kang, Beom-Ryong (Environment-Friendly Agricultural Research Institute, JARES) ;
  • Ko, Sug-Ju (Environment-Friendly Agricultural Research Institute, JARES) ;
  • Kim, Do-Ik (Environment-Friendly Agricultural Research Institute, JARES) ;
  • Choi, Duck-Soo (Environment-Friendly Agricultural Research Institute, JARES) ;
  • Kim, Seon-Gon (Insect & Sericultural Research Institute, JARES)
  • 강범용 (전남농업기술원 친환경연구소) ;
  • 고숙주 (전남농업기술원 친환경연구소) ;
  • 김도익 (전남농업기술원 친환경연구소) ;
  • 최덕수 (전남농업기술원 친환경연구소) ;
  • 김선곤 (전남농업기술원 곤충잠업연구소)
  • Received : 2011.07.25
  • Accepted : 2011.08.10
  • Published : 2011.08.31

Abstract

In order to develop a environmentally friendly control protocol for managing tomato leaf mold disease in the field, we employed bacteria- and fungi-based commercially available microbial preparations. The field experiment was conducted from April to July in 2010. Average incidence rates tomato leaf mold caused by Fulvia fulva were 13.1% at the two plastic houses located in Jangsung, Jeonnam area. Initially 11 microbial preparations were tested for antifungal activity against F. fulva in vitro. Among them, 7 selected preparations showed to be inhibited the mycelial growth of the fungal pathogen over 50%. Four microbes suppressed disease incidence as much 50% under greenhouse condition. Eventually in the field two microbial products including Bacillus subtilis GB-0365 and B. subtilis KB-401 respectively were showed control value up to 71.8% for four times sprays from 20 days to 70 days after transplanting. Furthermore, the control value of three times spray program demonstrated 79.3%. Efficacy of the three and four spray programs was more effective than that of non-spray control treatment. Our results indicated that adjustment of application method of commercially available microbial preparation could be used to control a target plant disease as an effective and efficient crop protection system for organic farming.

친환경 미생물제제를 이용하여 개발된 방제프로그램에 의해 토마토 잎곰팡이병에 대한 효과를 검정하였다. 2010년 4월부터 7월까지 시설내에서 토마토 잎곰팡이병은 약 13.1% 발생하였다. PDA 배지에서 잎곰팡이병원균의 균사 생장을 50% 이상 억제한 친환경유기농자재 7종을 선발하였다. 선발된 4종 병해관리용 유기농자재는 온실에서 50% 이상의 방제효율을 나타냈으며, 최종적으로 Bacillus subtilis GB-0365와 B. subtilis KB-401 2종은 토마토 정식 20일부터 70일까지 4회 살포시 71.8% 이상의 방제효과를 나타냈으며, 3회 처리시에는 79.3%의 우수한 방제효과를 나타냈다. 따라서 토마토 친환경 유기재배농가를 위해 선발된 친환경농자재와 시기에 따른 살포방법에 의한 방제프로그램은 효율적인 모델로 이용 가능할 것으로 기대된다.

Keywords

References

  1. 고영진, 이재군, 허재선, 박동만, 정재성, 유용만. 2003. 참다래 저장병 예방약제 최적 살포 체계 확립. 식물병연구 9: 205-208. https://doi.org/10.5423/RPD.2003.9.4.205
  2. 공현기, 전옥주, 최기혁, 이광렬, 백정우, 김현주, 센틸쿠마 무 루가이얀, 문병주, 이선우. 2010. 길항세균 Bacillus amyloliquefaciens A-2를 이용한 토마토 잎곰팡이병 방제용 미생물 제제. 식물병연구 16: 27-34. https://doi.org/10.5423/RPD.2010.16.1.027
  3. 국가통계포털. 2010. 농림어업 시설작물 재배면적(http://kosis.kr). 통계청.
  4. 김두호. 2005. 친환경농업의 현재와 미래. 한국농약과학회 학술발표대회 논문집 10-13.
  5. 농촌진흥청. 2009. 친환경유기농자재 목록공시기준 및 품질규격. 농촌진흥청 고시 제2009-27호.
  6. 농업과학기술원. 2003. 연구조사 분석기준. 농촌진흥청. 271-280.
  7. 명인식, 홍성기, 이영기, 최효원, 심홍식, 박진우, 박경석, 이상엽, 이승돈, 이수헌, 최홍수, 김용기, 신동범, 나동수, 예완해, 한 성숙, 조원대. 2006. 2005년 주요 농작물 병해 발생개황. 식물병연구 12: 153-157. https://doi.org/10.5423/RPD.2006.12.3.153
  8. 오연이, 박은우, 조일규, 강창성, 김성기, 양장석. 1996. 토마토 잎에 집적된 Triflumizole 잔류량의 온도에 따른 경시적 동태와 잎곰팡이병균에 대한 약효. 한국식물병리학회지 12: 307-314.
  9. 이용환, 김선곤, 김도익, 최경주, 김영철. 2006. 토마토 잎곰팡이 병 요방제 수준 설정. 전라남도농업기술원 시험연구보고서 655-661.
  10. 장태현. 2009. 토마토 잎곰팡이병에 대한 키토산 제제의 방제 효과. 식물병연구 15: 248-253. https://doi.org/10.5423/RPD.2009.15.3.248
  11. Cook, R. J. and Baker, K. F. 1983. The nature and practice of biological control of plant pathogens. APS. St. Paul, Minnesota. pp. 539.
  12. Delp, C. J. 1988. Fungicide Resistance in North America. The American Phytopathological Society, St. Paul, MN, U.S.A. pp. 133.
  13. Ellis, M. B. 1971. Dematiaceous Hyphomycetes. CAB. pp. 306-319.
  14. Emmert, E. A. B. and Handelsman, J. 1999. Biocontrol of plant disease: a Gram(-) positive perspective. FEMS Microbiol. Lett. 171: 1-9. https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
  15. Jones, J. B., Stall, R. E. and Zitter, T. A. 1991. Compendium of tomato disease. APS press. Minnesota. pp. 18.
  16. Lindhout, P. 1989. Further identification of races of Cladosporium fulvum (Fulvia fulva) on tomato originating from the Netherlands, France and poland. Neth. J. Plant Pathol. 95: 143-148. https://doi.org/10.1007/BF01999969
  17. Moon, B. J., Roh, S. H. and Cho, C. T. 1990. Biological control of Fusarium wilt of strawberry by antagonisitic bacterium, Pseudomonas gladioli, in green house. Kor. J. Plant Pathol. 6: 461-466.
  18. Schisler, D. A., Slininger, P. J., Behle, R. W. and Jackson, M. A. 2004. Formulation of Bacillus spp. for biological control of plant disease. Phytopathology 94: 1267-1271. https://doi.org/10.1094/PHYTO.2004.94.11.1267
  19. Tamez-Guerra, P., McGuire, M. R., Behle, R. W., Shasha, B. S. and Galn Wong, L. J. 2000. Assessment of microencapsulated formulations for improved residual activity of Bacillus thuringiensis. J. Econ. Entomol. 93: 219-225. https://doi.org/10.1603/0022-0493-93.2.219

Cited by

  1. Occurrence of Leaf Mold Pathogen Fulvia fulva Isolates Infecting Tomato Cf-9 Cultivars in Korea vol.31, pp.6, 2013, https://doi.org/10.7235/hort.2013.13017