Clay/Acrylamide Hydrogels Having Fucoidan

푸코이단을 함유한 Clay/아크릴아미드 하이드로젤

  • Hwang, Sun-Ae (Department of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Lee, Jong-Hwi (Department of Chemical Engineering and Materials Science, Chung-Ang University)
  • 황선애 (중앙대학교 공과대학 화학신소재공학부) ;
  • 이종휘 (중앙대학교 공과대학 화학신소재공학부)
  • Received : 2011.01.28
  • Accepted : 2011.03.04
  • Published : 2011.07.25

Abstract

Hydrogels have been investigated due to their potential in a myriad of applications. The introduction of functional moiety such as sulfide has expanded their applicability. In this study, an investigation was carried out on the introduction of fucoidan into the hydrogels of clay/acrylamide. In the resulting semi-IPN nanocomposite hydrogels, the linear polysaccharide, fucoidan, has strong ionic interactions with clay. It was also confirmed from simple mixing tests that fucoidan can physically crosslink with clay without chemical crosslinks. In the semi-IPN hydrogels, equilibrium swelling ratio increased with the content of fucoidan. Elastic modulus increased with an initial increase in the content of fucoidan, and decreased with a further increase. The work of fracture results of these hydrogels showed their tough properties. These hydrogels could provide functional properties such as mucoadhesiveness with tunable hydrogel characteristics.

하이드로젤은 다양한 분야에 적용가능한 그 잠재성으로 인해 널이 연구되어 왔다. 특히 설파이드와 같은 기능성기의 도입은 그들의 응용성을 넓혀왔다. 본 연구에서 점토/아크릴아미드 하이드로젤에 푸코이단을 도입하는 연구를 수행하였다. 얻어진 semi-IPN 나노복합 하이드로젤에서 선형사슬형 다당류인 푸코이단은 점토와 강한 이온 상호작용을 가졌다. 단순한 혼합실험에서도 푸코이단은 점토와 화학결합 없이 물리적 가교를 이룰 수 있었다. Semi-IPN 하이드로젤에서 평형팽윤비율은 푸코이단의 함량이 증가함에 따라 증가하였다. 탄성계수는 푸코이단의 함량이 증가함 따라 초기엔 증가하였고 더 증가하면 감소하였다. 이러한 하이드로젤의 파괴의 일 값은 강인한 성질을 보여주었다. 본 하이드로젤은 조절 가능한 하이드로젤로서의 성질들과 함께 점막접착성 등의 기능성 특징을 나타낼 수 있다.

Keywords

References

  1. A. Pourjavadi and G. R. Mahadvavinia, Turk. J. Chem., 30, 595 (2006).
  2. R. Po, J. Macromol. Sci. Rev. Macromol. Chem. Phys., 34C, 607 (1994).
  3. E. Karada˘g and D. Saraydin, Turk. J. Chem., 26, 863 (2002).
  4. S. Zhao, M. K. Lee, and J. H. Lee, J. Macromol. Sci., 47, 580 (2010). https://doi.org/10.1080/10601321003741982
  5. M. D. Blanco, O. Garcia, R. Olmo, J. M. Teijion, and I. Katime, J. Chromatogr. B, 680, 243 (1996). https://doi.org/10.1016/0378-4347(95)00401-7
  6. J. Chen, H. Park, and K. Park, Inc. J. Biomed. Mater. Res., 44, 53 (1999). https://doi.org/10.1002/(SICI)1097-4636(199901)44:1<53::AID-JBM6>3.0.CO;2-W
  7. L. Ferreira, M. M. Vidal, and M. H. Gil, Chem. Educator., 6, 100 (2001). https://doi.org/10.1007/s00897010461a
  8. B. K. Shin, E. J. Baek, Y. T. Kim, J. W. Jeong, Y. C. Nho, Y. M. Lim, J. S. Park, K. M. Huh, and J. S. Park, Polymer (Korea), 34, 459 (2010).
  9. K. Y. Yuk, Y. T. Kim, S. J. Im, J. Gamer, Y. Fu, K. Park, J. S. Park, and K. M. Huh, Polymer(Korea), 34, 253 (2010).
  10. E. C. Muniz and G. Geuskens, Macromolecules, 34, 4480 (2001). https://doi.org/10.1021/ma001192l
  11. S. Mishra, R. Bajpai, R. Katare, and A. K. Bajpai, eXPRESS Polym. Lett., 7, 407 (2007).
  12. O. Okay and W. Oppermann, Macromolecules, 40, 3378 (2007). https://doi.org/10.1021/ma062929v
  13. K. Haraguchi, T. Takehisa, and S. Fan, Macromolecules, 35, 10162 (2002). https://doi.org/10.1021/ma021301r
  14. K. Haraguchi, R. Farnworth, A. Ohbayashi, and T. Takehisa, Macromolecules, 36, 5732 (2003). https://doi.org/10.1021/ma034366i
  15. K. Haraguchi, H. J. Li, K. Matsuda, T. Takehisa, and E. Elliott, Macromolecules, 38, 3482 (2005). https://doi.org/10.1021/ma047431c
  16. N. A. Churochkina, S. G. Starodoubtsev, and A. R. Khokhlov, Polymer Gel and Network, 6, 205 (1998). https://doi.org/10.1016/S0966-7822(97)00014-2
  17. Y. Liu, M. Zhu, X. Liu, W. Zhang, B. Sun, Y. Chen, and H. J. P. Adler, Polymer, 47, 1 (2006). https://doi.org/10.1016/j.polymer.2005.11.030
  18. W. F. Lee and Y. J. Chen, J. Appl. Polym. Sci., 82, 2487 (2001). https://doi.org/10.1002/app.2099
  19. S. Zhao and J. H. Lee, J. Macromol. Sci., 17, 156 (2009).
  20. J. H. Lee, C. M. Macosko, and D. W. Urry, Macromolecules, 34, 5968 (2001). https://doi.org/10.1021/ma0017844
  21. B. Cotterell and J. K. Reddel, Int. J. Fract., 13, 267 (1997).
  22. K. B. Broberg, J. Mech. Phys. Solid, 19, 407 (1971). https://doi.org/10.1016/0022-5096(71)90008-1
  23. H. J. Kong, E. Wong, and D. J. Mooney, Macromolecules, 36, 4582 (2003). https://doi.org/10.1021/ma034137w