Characteristics of Ring-Opening Isomerization Polymerization of [4.3.0] Cyclic Pseudoureas

[4.3.0] 환상 유사 우레아의 이성화 개환중합과 특성평가

  • Lee, Chan-Woo (Department of innovative industrial Technology, Hoseo University) ;
  • Chung, Jin-Do (Department of Environmental Engineering, Hoseo University)
  • 이찬우 (호서대학교 첨단산업공학과) ;
  • 정진도 (호서대학교 환경공학과)
  • Received : 2011.01.12
  • Accepted : 2011.04.06
  • Published : 2011.07.25

Abstract

The ring-opening isomerization polymerization behavior of 2,5,6,7-tetrahydro-3H-imidazo[2,1-b] [1,3] oxazine(TII) has been studied under various conditions. The present study aimed at improving the low polymerizability of the above monomer (six-membered ring) up to a level comparable to that of 2,5,6-tetrahydroimidazo[2,1-b] [l,3] oxazole(TIO) (five-membered ring). The optimum result could be observed when methyl trifluoromethanesulfonate(MeOTf) and nitrobenzene were used as an initiator and a solvent in the polymerization at $60^{\circ}C$ for 24 h. Polymers were confirmed by$^1H$ NMR과$^{13}C$ NMR, and m measurements. The molecular weight obtained by gel permeation chromatography (GPC) corresponded to the molecular weight theoretically calculated from the feed ratio. The melting temperature ($T_m$) of TII was conspicuously different from that of TIO, because of the difference in the alkyl group.

5원환의 2,3,5,6-tetrahydroimidazo[2,1-b] [1,3] oxazole(TIO)와 비교하여 6원환인 2,5,6,7-tetrahydro-3H-imidazo[2,1-b] [1,3] oxazine(TII)가 중합반응성이 낮은 결점을 개선하고자 각종의 조건하에서 중합을 실시한 결과, 최적의 중합조건으로 methyl trifluoromethanesulfonate(MeOTf)을 개시제로 사용한, 극성이 높은 니트로벤젠 용매의 $60^{\circ}C$에서 24시간 반응시킴에 의해 고수율의 중합체를 얻었다. 생성된 중합체를 $^1H$ NMR과$^{13}C$ NMR, IR 스펙트럼으로 분석하였으며, GPC로부터 구한 분자량과 이론분자량이 거의 일치함도 확인하였으며, 융점($T_m$)은 알킬 그룹의 길이에 따라 큰 차이를 나타내었다.

Keywords

References

  1. M. Miyamoto, K. Aoi, and T. Saegusa, Macromolecules, 24, 11 (1991). https://doi.org/10.1021/ma00001a002
  2. M. Miyamoto, M. Shimakura, K. Tsutsui, K. Hasegawa, K. Aoi, S. Yamaga, and T. Saegusa, Macromolecules, 26, 7716 (1993).
  3. M. Miyamoto, M. Morimoto, and T. Saegusa, Polym. J., 25, 1133 (1993). https://doi.org/10.1295/polymj.25.1133
  4. M. Miyamoto, M. Shimakura, S. Shimoda, and K. Hasegawa, Polym. J., 27, 469 (1995). https://doi.org/10.1295/polymj.27.469
  5. M. Miyamoto, K. Aoi, M. Morimoto, Y. Chujo, and T. Saegusa, Macromolecules, 25, 5878 (1992). https://doi.org/10.1021/ma00048a004
  6. M. Miyamoto, H. Amii, K. Aoi, and T. Saegusa, Macromolecules, 26, 1474 (1993). https://doi.org/10.1021/ma00058a045
  7. M. Miyamoto, K. Aoi, S. Yamaga, and T. Saegusa, Macromolecules, 25, 5111 (1992). https://doi.org/10.1021/ma00045a044
  8. R. Keller and J. Edwards, J. Am. Chem. Soc., 74, 215 (1952). https://doi.org/10.1021/ja01121a055
  9. T Saegusa, H. Ikeda, and H. Fujii, Macromolecules, 5, 359 (1972). https://doi.org/10.1021/ma60028a005
  10. T. Saegusa, S. Kobayashi, and Y. Nagura, Macromolecules, 7, 713 (1974). https://doi.org/10.1021/ma60042a001
  11. A. Levy and M. Litt, J. Polym. Sci., A-1, 6, 63 (1968).
  12. A. Levy and M. Litt, J. Polym. Sci., A-1, 6, 1883 (1968).
  13. M. Litt, T. T. Chen, and B. R. Hsieh, J. Polym. Sci., Polym. Chem. Ed., 24, 3407 (1986). https://doi.org/10.1002/pola.1986.080241223