초임계 유체에서 L-Lactide의 Scale-up 중합

Scale-up Polymerization of L -Lactide in Supercritical Fluid

  • ;
  • 김세윤 (한국과학기술연구원 생채재료연구센터) ;
  • 최동훈 (고려대학교 화학과) ;
  • 김수현 (한국과학기술연구원 생채재료연구센터)
  • Prabowo, Benedictus (Department of Chemistry, Korea University) ;
  • Kim, Se-Yoon (Biomaterials Research Center, Korea Institute of Science and Technology) ;
  • Choi, Dong-Hoon (Department of Chemistry, Korea University) ;
  • Kim, Sao-Hyun (Biomaterials Research Center, Korea Institute of Science and Technology)
  • 투고 : 2010.08.20
  • 심사 : 2011.03.25
  • 발행 : 2011.07.25

초록

초임계 유체에서 poly(L-Lactide) (PLLA)의 산업화 생산 공정 개발을 위한 예비 연구로 1-dodecano/stannous 2-ethyl-hexanoate(DoOH/Sn(Oct)$_2$)를 개시제로 하여 chlorodifluoromethane 초임계 용매 하에서 락티드의 개환 중합을 실시하였다. 중합은 3 L 반응기를 사용하였으며 중합시간, 온도, 압력 및 단량체와 초임계 용액 농도에 따른 중합거동을 관찰하였다. 중합시간이 5시간 경과할 경우 얻어진 중합체의 반응 수율 및 분자량은 각각 72%, 68000 g/mol이었다. 단량체의 농도가 증가할수록 중합체의 수율 및 분자량은 증가하였으며 최대 각각 97%, 144000 g/mol이 얻어졌다. 반응기의 압력이 130에서 240 bar로 증가할 경우 PLLA의 수율 및 분자량이 증가하였다. 얻어진 중합체의 열안정성을 향상시키기 위해 메탄올 처리 및 진공 처리를 실시하였다. 그 결과 두 가지 방법 모두 PLLA의 열안정성을 향상시켰다.

For the purpose of the pre-industry production of poly(L-lactide) (PLLA) and full understanding of the supercritical polymerization system, large scale polymerization of L-iactide initiated by 1-dodecano/stannous 2-ethyl-hexanoate (DoOH/Sn(Oct)$_2$) was carried out in supercritical chlorodifluoromethane under various reaction conditions (time, temperature and pressure)and reactants (monomer and supercritical solvent) concentrations. A 3 L sized-reactor system was used throughout this study. The monomer conversion increased to 72% on increasing reaction time to 5 h. The molecular weight of PLLA product also increased to 68000 g/moi over the same period. An increase in monomer concentration resulted in a higher molecular weight, up to 144000 g/mol and 97% of monomer conversion. Raising the reaction pressure from 130 to 240 bar also resulted in an increased monomer conversion and molecular weight. To increase heat resistivity of PLLA, methanol treatment and heat-vacuum methods were evaluated. Both of them successfully improved the heat resistivity property of PLLA.

키워드

참고문헌

  1. J. C. Middleton and A. J. Tipton, Biomaterials, 21, 2335(2000). https://doi.org/10.1016/S0142-9612(00)00101-0
  2. A. I. Cooper, J. Mater. Chem., 10, 207 (2000). https://doi.org/10.1039/a906486i
  3. D. L. Tomasko, H. Li, D. Liu, X. Han, M. J. Wingert, and L. Lee, J. Ind. Eng. Chem. Res., 42, 6431 (2003). https://doi.org/10.1021/ie030199z
  4. S. Alsoy and J. L. Duda, Chem. Eng. Technol., 22, 971 (1999). https://doi.org/10.1002/(SICI)1521-4125(199911)22:11<971::AID-CEAT971>3.0.CO;2-V
  5. J. L. Kendall, D. A. Canelas, J. L. Young, and J. M. De Simone, Chem. Rev., 99, 543 (1999). https://doi.org/10.1021/cr9700336
  6. J. W. Pack, S. H. Kim, S. Y. Park, and Y. W. Lee, Macromol. Biosci., 4, 340 (2004). https://doi.org/10.1002/mabi.200300089
  7. J. W. Pack, S. H. Kim, S. Y. Park, Y. W. Lee, and Y. H. Kim, Macromolecules, 36, 8923 (2003). https://doi.org/10.1021/ma034910n
  8. J. W. Pack, S. H. Kim, S. Y. Park, Y. W. Lee, and Y. H. Kim, Macromolecules, 37, 3564 (2004). https://doi.org/10.1021/ma049951d
  9. Z. H. Zhou, X. P. Liu, and L. H. Liu, Int. J. Polym. Mater., 57, 532 (2008). https://doi.org/10.1080/00914030701816110
  10. Y. He, Z. Fan, J. Wei, and S. Li, Polym. Eng. Sci., 46, 1583 (2006). https://doi.org/10.1002/pen.20617
  11. Y. Doi and K. Fukuda, Proceedings of the Third International Scientific Workshop on Biodegradable Plastics and Polymers, Japan, p.464 (1994).
  12. A. A. Clifford, Fundamentals of Supercritical Fluids, Oxford University Press, Oxford, p.189 (1998).
  13. T. Asno and W. J. le Noble, Chem. Rev., 78, 407 (1978). https://doi.org/10.1021/cr60314a004
  14. R. Van Eldik, T. Asno, and W. J. le Noble, Chem. Rev., 89, 549 (1989). https://doi.org/10.1021/cr00093a005
  15. H. S. Byun, Polymer(Korea), 23, 181 (1999).